Question Bank

Group Theory

- Q 1 Prove that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all a and b in G.
- Q 2 Let G be a group. Show that $Z(G) = \bigcap_{a \in G} C(a)$. [This means the intersection of *all* subgroups of the form C(a).]
- Q3 If a and b are distinct group elements, prove that either $a^2 \neq b^2$ or $a^3 \neq b^3$.
- Q 4 . Find a cyclic subgroup of order 4 in U(40).
- Q 5 Find a noncyclic subgroup of order 4 in U(40).
- Q 6 Let $G = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in Z \right\}$ under addition. Let $H = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in G \mid a+b+c+d=0 \right\}$. Prove that H is a subgroup of G. What if 0 is replaced by 1?
- Q 7 Let $G = GL(2, \mathbb{R})$. a. Find $C\left(\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}\right)$. b. Find $C\left(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\right)$.
 - c. Find Z(G).
- Q 8 Prove that in any group, an element and its inverse have the same order.
- If *H* is a subgroup of *G*, then by the *centralizer* C(H) of *H* we mean the set $\{x \in G \mid xh = hx \text{ for all } h \in H\}$. Prove that C(H) is a subgroup of *G*.
- Q 10 Find an example of a noncyclic group, all of whose proper subgroups are cyclic.
- Q 11 In Z_{24} , list all generators for the subgroup of order 8. Let $G = \langle a \rangle$ and let |a| = 24. List all generators for the subgroup of order 8.

- Q 12 Let G be a group and let $a \in G$. Prove that $\langle a^{-1} \rangle = \langle a \rangle$.
- In Z_{24} , find a generator for $\langle 21 \rangle \cap \langle 10 \rangle$. Suppose that |a| = 24. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?
- Q 14 Prove that a group of order 3 must be cyclic.
- Q 15 Let m and n be elements of the group Z. Find a generator for the group $\langle m \rangle \cap \langle n \rangle$.
- Suppose that a and b are group elements that commute and have orders m and n. If $\langle a \rangle \cap \langle b \rangle = \{e\}$, prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.
- Q 17 Let a and b be elements of a group. If |a| = 10 and |b| = 21, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.
- Q 18 Let a and b belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.
- Q 19 Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \middle| n \in Z \right\}$ is a cyclic subgroup of $GL(2, \mathbb{R})$.
- Q 20 Let

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix} \quad \text{and} \quad \beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 1 & 2 & 4 & 3 & 5 \end{bmatrix}.$$

Compute each of the following.

$$\mathbf{a} \cdot \alpha^{-1}$$

Q 21 Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6 \end{bmatrix}$ and $\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4 \end{bmatrix}$.

Write α , β , and $\alpha\beta$ as

a. products of disjoint cycles;

b. products of 2-cycles.

- Q 22 Let α and β belong to S_n . Prove that $\alpha\beta$ is even if and only if α and β are both even or both odd.
- Q 23 Let $\beta = (123)(145)$. Write β^{99} in disjoint cycle form.
- Let $\beta = (1,3,5,7,9,8,6)(2,4,10)$. What is the smallest positive integer n for which $\beta^n = \beta^{-5}$?
- Q 25 Prove that S_n is non-Abelian for all $n \ge 3$.
- **Q 26** . Show that for $n \ge 3$, $Z(S_n) = \{\varepsilon\}$.
- Q 27 Show that a permutation with odd order must be an even permutation.
- Why does the fact that the orders of the elements of A_4 are 1, 2, and 3 imply that $|Z(A_4)| = 1$?