
Booth's Algorithm Example

CS440

Points to remember

 When using Booth's Algorithm:

 You will need twice as many bits in your

product as you have in your original two

operands.

 The leftmost bit of your operands (both

your multiplicand and multiplier) is a SIGN

bit, and cannot be used as part of the

value.

To begin

 Decide which operand will be the multiplier
and which will be the multiplicand

 Convert both operands to two's complement
representation using X bits

 X must be at least one more bit than is
required for the binary representation of the
numerically larger operand

 Begin with a product that consists of the
multiplier with an additional X leading zero bits

Example
 In the week by week, there is an example of

multiplying 2 x (-5)

 For our example, let's reverse the operation,

and multiply (-5) x 2

 The numerically larger operand (5) would require

3 bits to represent in binary (101). So we must

use AT LEAST 4 bits to represent the operands, to

allow for the sign bit.

 Let's use 5-bit 2's complement:

 -5 is 11011 (multiplier)

 2 is 00010 (multiplicand)

Beginning Product

 The multiplier is:

 11011

 Add 5 leading zeros to the multiplier to

get the beginning product:

 00000 11011

Step 1 for each pass

 Use the LSB (least significant bit) and the
previous LSB to determine the arithmetic action.

 If it is the FIRST pass, use 0 as the previous LSB.

 Possible arithmetic actions:

 00 no arithmetic operation

 01 add multiplicand to left half of product

 10 subtract multiplicand from left half of product

 11 no arithmetic operation

Step 2 for each pass

 Perform an arithmetic right shift
(ASR) on the entire product.

 NOTE: For X-bit operands, Booth's
algorithm requires X passes.

Example

 Let's continue with our example of multiplying

(-5) x 2

 Remember:

 -5 is 11011 (multiplier)

 2 is 00010 (multiplicand)

 And we added 5 leading zeros to the

multiplier to get the beginning product:

 00000 11011

Example continued

 Initial Product and previous LSB

 00000 11011 0

(Note: Since this is the first pass, we use 0 for the

previous LSB)

 Pass 1, Step 1: Examine the last 2 bits

 00000 11011 0

The last two bits are 10, so we need to:

 subtract the multiplicand from left half of product

Example: Pass 1 continued

 Pass 1, Step 1: Arithmetic action

(1) 00000 (left half of product)

 -00010 (mulitplicand)

 11110 (uses a phantom borrow)

 Place result into left half of product

 11110 11011 0

Example: Pass 1 continued

 Pass 1, Step 2: ASR (arithmetic shift right)

 Before ASR

 11110 11011 0

 After ASR

 11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 1 is complete.

Example: Pass 2

 Current Product and previous LSB

 11111 01101 1

 Pass 2, Step 1: Examine the last 2 bits

 11111 01101 1

 The last two bits are 11, so we do NOT need to perform

an arithmetic action --

 just proceed to step 2.

Example: Pass 2 continued

 Pass 2, Step 2: ASR (arithmetic shift right)

 Before ASR

 11111 01101 1

 After ASR

 11111 10110 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 2 is complete.

Example: Pass 3

 Current Product and previous LSB

 11111 10110 1

 Pass 3, Step 1: Examine the last 2 bits

 11111 10110 1

 The last two bits are 01, so we need to:

 add the multiplicand to the left half of the product

Example: Pass 3 continued

 Pass 3, Step 1: Arithmetic action

(1) 11111 (left half of product)

 +00010 (mulitplicand)

 00001 (drop the leftmost carry)

 Place result into left half of product

 00001 10110 1

Example: Pass 3 continued

 Pass 3, Step 2: ASR (arithmetic shift right)

 Before ASR

 00001 10110 1

 After ASR

 00000 11011 0

(left-most bit was 0, so a 0 was shifted in on the left)

 Pass 3 is complete.

Example: Pass 4

 Current Product and previous LSB

 00000 11011 0

 Pass 4, Step 1: Examine the last 2 bits

 00000 11011 0

The last two bits are 10, so we need to:

 subtract the multiplicand from the left half of the product

Example: Pass 4 continued

 Pass 4, Step 1: Arithmetic action

(1) 00000 (left half of product)

 -00010 (mulitplicand)

 11110 (uses a phantom borrow)

 Place result into left half of product

 11110 11011 0

Example: Pass 4 continued

 Pass 4, Step 2: ASR (arithmetic shift right)

 Before ASR

 11110 11011 0

 After ASR

 11111 01101 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 4 is complete.

Example: Pass 5

 Current Product and previous LSB

 11111 01101 1

 Pass 5, Step 1: Examine the last 2 bits

 11111 01101 1

 The last two bits are 11, so we do NOT need to perform

an arithmetic action --

 just proceed to step 2.

Example: Pass 5 continued

 Pass 5, Step 2: ASR (arithmetic shift right)

 Before ASR

 11111 01101 1

 After ASR

 11111 10110 1

(left-most bit was 1, so a 1 was shifted in on the left)

 Pass 5 is complete.

Final Product

 We have completed 5 passes on the
5-bit operands, so we are done.

 Dropping the previous LSB, the
resulting final product is:

 11111 10110

Verification

 To confirm we have the correct answer,
convert the 2's complement final
product back to decimal.

 Final product: 11111 10110

 Decimal value: -10

 which is the CORRECT product of:

 (-5) x 2

