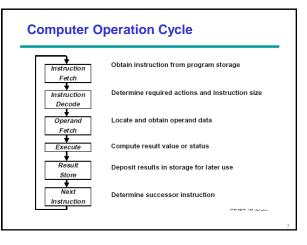

Overview

- Computer architecture
- Operand addressing
 - Addressing architecture
 - Addressing modes
- Elementary instructions
 - Data transfer instructions
 - Data manipulation instructions
 Floating point computations
 - Program control instructions
 - Program interrupt and exceptions



1

Register Set

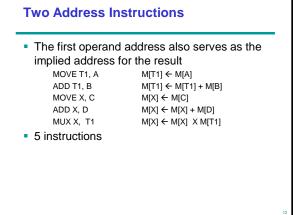
- Programmer accessible registers (R₀ to R₇ in previous multi-cycle computer)
- Other registers
 - Registers in the register file accessible only to microprograms (R₈ to R₁₅)
 - Instruction registers (IR)
 - Program counter (PC)
 - Pipeline registers
 - Processor status register (PSR: CVNZ state)
 - Stack pointer (SP)

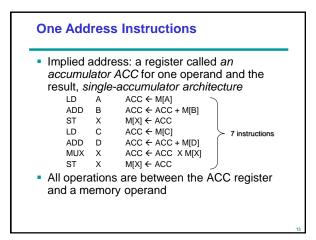
Overview

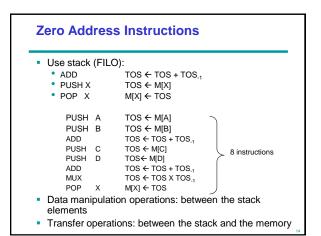
- Computer architecture
- Operand addressing
 - Addressing architecture
 - Addressing modes
- Elementary instructions
 - Data transfer instructions
 - Data manipulation instructions
 Floating point computations
 - Program control instructions
 - Program interrupt and exceptions

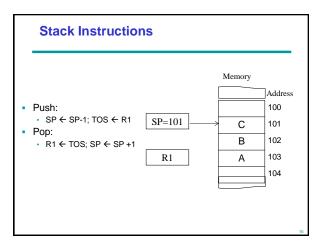
Operand Addressing

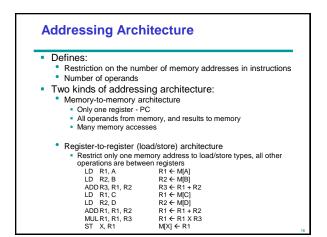
- Operand: register value, memory content, or immediate
- Explicit address: address field in the instruction
- Implied address: the location of operand is specified by the opcode or other operand address


Example: X=(A+B)(C+D) Operands are in memory address symbolized by the letters A,B,C,D, result stored memory address of X ADD T1, A, B M[T1] ← M[A] + M[B] ADD T2, C, D M[T2] ← M[C] + M[D] MUX X, T1, T2 M[X] ← M[T1] X M[T2]


ADD T2, C, D MUX X, T1, T2	
ADD R1, A, B	
ADD R2, C, D	
MUX X, R1, R2	


OR


 $R1 \leftarrow M[A] + M[B]$ $R2 \leftarrow M[C] + M[D]$ $M[X] \leftarrow R1 \times R2$


- +: Short program, 3 instructions
- -: Binary coded instruction require more bits to specify three addresses

Addressing Modes

- Address field: contains the information needed to determine the location of the operands and the result of an operation
- Addressing mode: specifies how to interpret the information within this address field, how to compute the actual or effective address of the data needed.
- Availability of a variety of addressing modes lets programmers write more efficient code

Addressing Modes

- Implied mode implied in the opcode, such as stack, accumulator
- Immediate mode (operand) a = 0x0801234
- Register mode a=R[b]
- Register-indirect mode a =M[R[b]]
- Direct addressing mode a = M[0x0013df8]
- Indirect Addressing mode a= M[M[0x0013df8]]
- PC-relative addressing branch etc. (offset + PC)
- Indexed addressing a=b[1]

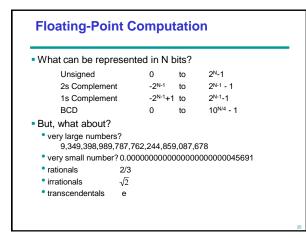
Example		ADRS or NBR =500		0	R1=400	
Addressing mode	Symbolic conversion	Register transfer	Effective address	Content of ACC	250 251	Opcode Mod
Immediate	LDA #NBR	ACC←NBR	-	500	252	Next instruction
Register	LDA R1	ACC←R1	-	400	400	700
Register- indirect	LDA (R1)	ACC←M[R1]	400	700	500	800
Direct	LDA ADRS	ACC←M[ADRS]	500	800		
Indirect	LDA [ADRS]	ACC←M[M[ADRS]]	800	300	750	600
Relative	LDA \$ADRS	ACC←M[ADRS+PC]	750	600	800	300
Index	LDA ADRS(R1)	ACC←M[ADRS+R1]	900	200	900	200

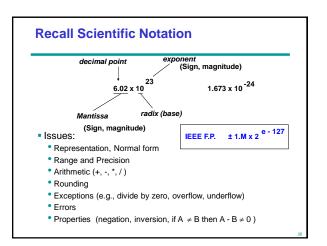
Overview Computer architecture Operand addressing Addressing architecture Addressing modes Addressing modes Elementary instructions Data transfer instructions Data manipulation instructions Floating point computations Program control instructions Program interrupt and exceptions

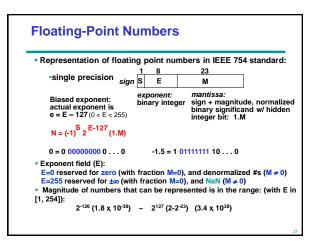
	Instruction Set Architecture			
-		RISC (reduced instruction set computers)	CISC (complex instruction set computers)	
Men acce	-	restricted to load/store instructions, and data manipulation instructions are register-to-register	is directly available to most types of instructions	
Add mod	ressing le	limited in number	substantial in number	
Insti form	ruction nats	all of the same length	of different lengths	
Insti	ructions	perform elementary operations	perform both elementary and complex operations	
Con	trol unit	Hardwired, high throughput and fast execution	Microprogrammed, facilitate compact programs and conserve memory, 21	

Data Transfer Instructions

- Data transfer: memory ←→ registers, processor registers ←→ input/output registers, among the processor registers
- Data transfer instructions


Name	Mnemonic
Load	LD
Store	ST
Move	MOVE
Exchange	XCH
Push	PUSH
Рор	POP
Input	IN
Output	OUT


I/O


- Input and output (I/O) instructions transfer data between processor registers and I/O devices
 - Ports
- Independent I/O system: address range assigned to memory and I/O ports are independent from each other
- Memory-mapped I/O system: assign a subrange of the memory addresses for addressing I/O ports

Data Manipulation Instructions

Arithmetic		Logical and bit manipulation		Shift instructions		
Name Mnem nic		Name	Mnem onic	Name	Mnem onic	
Increment	INC	Clear	CLR	Logical shift right	SHR	
Decrement	DEC	Set	SET	Logical shift left	SHL	
Add	ADD	Complement	NOT	Arithmetic shift right	SHRA	
Subtract	SUB	AND	AND	Arithmetic shift left	SHRL	
Multiply	MUL	OR	OR	Rotate right	ROR	
Divide	DIV	Exclusive-OR	XOR	Rotate left	ROL	
Add with carry	ADDC	Clear carry	CLRC	Rotate right with carry	RORC	
Subtract with borrow	SUBB	Set Carry	SETC	Rotate left with carry	ROLC	
Subtract reverse	SUBR	Complement carry	COMC			
Negate	NEG					

