
CSE431 L06 Basic MIPS Pipelining.1 Irwin, PSU, 2005

CSE 431
 Computer Architecture

Fall 2005

Lecture 06: Basic MIPS Pipelining Review

Mary Jane Irwin (www.cse.psu.edu/~mji)

www.cse.psu.edu/~cg431

[Adapted from Computer Organization and Design,

Patterson & Hennessy, © 2005, UCB]

http://www.cse.psu.edu/~mji
http://www.cse.psu.edu/~

CSE431 L06 Basic MIPS Pipelining.2 Irwin, PSU, 2005

Review: Single Cycle vs. Multiple Cycle Timing

Clk Cycle 1

Multiple Cycle Implementation:

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

multicycle clock

slower than 1/5th of

single cycle clock

due to stage register

overhead

CSE431 L06 Basic MIPS Pipelining.3 Irwin, PSU, 2005

How Can We Make It Even Faster?

 Split the multiple instruction cycle into smaller and

smaller steps

 There is a point of diminishing returns where as much time is

spent loading the state registers as doing the work

 Start fetching and executing the next instruction before

the current one has completed

 Pipelining – (all?) modern processors are pipelined for

performance

 Remember the performance equation:

 CPU time = CPI * CC * IC

 Fetch (and execute) more than one instruction at a time

 Superscalar processing – stay tuned

CSE431 L06 Basic MIPS Pipelining.4 Irwin, PSU, 2005

A Pipelined MIPS Processor

 Start the next instruction before the current one has
completed

 improves throughput - total amount of work done in a given time

 instruction latency (execution time, delay time, response time -
time from the start of an instruction to its completion) is not
reduced

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

IFetch Dec Exec Mem WB lw

Cycle 7 Cycle 6 Cycle 8

sw IFetch Dec Exec Mem WB

R-type IFetch Dec Exec Mem WB

- clock cycle (pipeline stage time) is limited by the slowest stage

- for some instructions, some stages are wasted cycles

CSE431 L06 Basic MIPS Pipelining.5 Irwin, PSU, 2005

Single Cycle, Multiple Cycle, vs. Pipeline

Multiple Cycle Implementation:

Clk

Cycle 1

IFetch Dec Exec Mem WB

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

IFetch Dec Exec Mem

lw sw

IFetch

R-type

lw IFetch Dec Exec Mem WB

Pipeline Implementation:

IFetch Dec Exec Mem WB sw

IFetch Dec Exec Mem WB R-type

Clk

Single Cycle Implementation:

lw sw Waste

Cycle 1 Cycle 2

CSE431 L06 Basic MIPS Pipelining.6 Irwin, PSU, 2005

MIPS Pipeline Datapath Modifications
 What do we need to add/modify in our MIPS datapath?

 State registers between each pipeline stage to isolate them

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data IF
e

tc
h

/D
e

c

D
e
c

/E
x

e
c

E
x

e
c

/M
e
m

M
e

m
/W

B

IF:IFetch ID:Dec EX:Execute MEM:

MemAccess

WB:

WriteBack

System Clock

Sign

Extend

CSE431 L06 Basic MIPS Pipelining.7 Irwin, PSU, 2005

Pipelining the MIPS ISA

 What makes it easy
 all instructions are the same length (32 bits)

- can fetch in the 1st stage and decode in the 2nd stage

 few instruction formats (three) with symmetry across formats

- can begin reading register file in 2nd stage

 memory operations can occur only in loads and stores

- can use the execute stage to calculate memory addresses

 each MIPS instruction writes at most one result (i.e.,

changes the machine state) and does so near the end of the

pipeline (MEM and WB)

 What makes it hard
 structural hazards: what if we had only one memory?

 control hazards: what about branches?

 data hazards: what if an instruction’s input operands depend

on the output of a previous instruction?

CSE431 L06 Basic MIPS Pipelining.8 Irwin, PSU, 2005

Graphically Representing MIPS Pipeline

 Can help with answering questions like:

 How many cycles does it take to execute this code?

 What is the ALU doing during cycle 4?

 Is there a hazard, why does it occur, and how can it be fixed?
A

L
U

IM Reg DM Reg

CSE431 L06 Basic MIPS Pipelining.9 Irwin, PSU, 2005

Why Pipeline? For Performance!

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Once the

pipeline is full,

one instruction

is completed

every cycle, so

CPI = 1

Time to fill the pipeline

CSE431 L06 Basic MIPS Pipelining.10 Irwin, PSU, 2005

Can Pipelining Get Us Into Trouble?

 Yes: Pipeline Hazards

 structural hazards: attempt to use the same resource by two

different instructions at the same time

 data hazards: attempt to use data before it is ready

- An instruction’s source operand(s) are produced by a prior

instruction still in the pipeline

 control hazards: attempt to make a decision about program

control flow before the condition has been evaluated and the

new PC target address calculated

- branch instructions

 Can always resolve hazards by waiting

 pipeline control must detect the hazard

 and take action to resolve hazards

CSE431 L06 Basic MIPS Pipelining.11 Irwin, PSU, 2005

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

lw

Inst 1

Inst 2

Inst 4

Inst 3

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A
L

U

Mem Reg Mem Reg

A Single Memory Would Be a Structural Hazard

Reading data from

memory

Reading instruction

from memory

 Fix with separate instr and data memories (I$ and D$)

CSE431 L06 Basic MIPS Pipelining.13 Irwin, PSU, 2005

How About Register File Access?

I

n

s

t

r.

O

r

d

e

r

Time (clock cycles)

Inst 1

Inst 2

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix register file

access hazard by

doing reads in the

second half of the

cycle and writes in

the first half

add $1,

add $2,$1,

clock edge that controls

register writing

clock edge that controls

loading of pipeline state

registers

CSE431 L06 Basic MIPS Pipelining.15 Irwin, PSU, 2005

Register Usage Can Cause Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

 Read before write data hazard

CSE431 L06 Basic MIPS Pipelining.16 Irwin, PSU, 2005

Loads Can Cause Data Hazards

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

 Load-use data hazard

CSE431 L06 Basic MIPS Pipelining.17 Irwin, PSU, 2005

stall

stall

One Way to “Fix” a Data Hazard

I

n

s

t

r.

O

r

d

e

r

add $1,

A
L

U

IM Reg DM Reg

sub $4,$1,$5

and $6,$1,$7

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Can fix data

hazard by

waiting – stall –

but impacts CPI

CSE431 L06 Basic MIPS Pipelining.19 Irwin, PSU, 2005

Another Way to “Fix” a Data Hazard

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

Fix data hazards

by forwarding

results as soon as

they are available

to where they are

needed
A

L
U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

I

n

s

t

r.

O

r

d

e

r

add $1,

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CSE431 L06 Basic MIPS Pipelining.21 Irwin, PSU, 2005

Forwarding with Load-use Data Hazards

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Will still need one stall cycle even with forwarding

I

n

s

t

r.

O

r

d

e

r

lw $1,4($2)

sub $4,$1,$5

and $6,$1,$7

xor $4,$1,$5

or $8,$1,$9

CSE431 L06 Basic MIPS Pipelining.22 Irwin, PSU, 2005

Branch Instructions Cause Control Hazards

I

n

s

t

r.

O

r

d

e

r

lw

Inst 4

Inst 3

beq

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

A
L

U

IM Reg DM Reg

 Dependencies backward in time cause hazards

CSE431 L06 Basic MIPS Pipelining.23 Irwin, PSU, 2005

stall

stall

stall

One Way to “Fix” a Control Hazard

I

n

s

t

r.

O

r

d

e

r

beq

A
L

U

IM Reg DM Reg

lw

A
L

U

IM Reg DM Reg

A
L

U
 Inst 3

IM Reg DM

Fix branch

hazard by

waiting –

stall – but

affects CPI

CSE431 L06 Basic MIPS Pipelining.25 Irwin, PSU, 2005

Corrected Datapath to Save RegWrite Addr
 Need to preserve the destination register address in

the pipeline state registers

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX EX/MEM

MEM/WB

CSE431 L06 Basic MIPS Pipelining.26 Irwin, PSU, 2005

MIPS Pipeline Control Path Modifications
 All control signals can be determined during Decode

 and held in the state registers between pipeline stages

Read

Address

Instruction

Memory

Add

P
C

4

Write Data

Read Addr 1

Read Addr 2

Write Addr

Register

File

Read

 Data 1

Read

 Data 2

16 32

ALU

Shift

left 2

Add

Data

Memory

Address

Write Data

Read

Data

IF/ID

Sign

Extend

ID/EX

EX/MEM

MEM/WB

Control

CSE431 L06 Basic MIPS Pipelining.27 Irwin, PSU, 2005

Other Pipeline Structures Are Possible

 What about the (slow) multiply operation?

 Make the clock twice as slow or …

 let it take two cycles (since it doesn’t use the DM stage)

A
L

U

IM Reg DM Reg

MUL

A
L

U

IM Reg DM1 Reg DM2

 What if the data memory access is twice as slow as
the instruction memory?

 make the clock twice as slow or …

 let data memory access take two cycles (and keep the same
clock rate)

CSE431 L06 Basic MIPS Pipelining.28 Irwin, PSU, 2005

Sample Pipeline Alternatives

 ARM7

 StrongARM-1

 XScale

A
L

U

IM1 IM2 DM1 Reg

DM2

IM Reg EX

PC update

IM access

decode

reg

 access

ALU op

DM access

shift/rotate

commit result

 (write back)

A
L

U

IM Reg DM Reg

Reg SHFT

PC update

BTB access

start IM access

IM access

decode

reg 1 access

shift/rotate

reg 2 access

ALU op

start DM access

exception

DM write

reg write

CSE431 L06 Basic MIPS Pipelining.29 Irwin, PSU, 2005

Summary

 All modern day processors use pipelining

 Pipelining doesn’t help latency of single task, it helps

throughput of entire workload

 Potential speedup: a CPI of 1 and fast a CC

 Pipeline rate limited by slowest pipeline stage

 Unbalanced pipe stages makes for inefficiencies

 The time to “fill” pipeline and time to “drain” it can impact

speedup for deep pipelines and short code runs

 Must detect and resolve hazards

 Stalling negatively affects CPI (makes CPI less than the ideal

of 1)

CSE431 L06 Basic MIPS Pipelining.30 Irwin, PSU, 2005

Next Lecture and Reminders

 Next lecture

 Overcoming data hazards

- Reading assignment – PH, Chapter 6.4-6.5

 Reminders

 HW2 due September 29th

 SimpleScalar tutorials scheduled

- Thursday, Sept 22, 5:30-6:30 pm in 218 IST

 Evening midterm exam scheduled

- Tuesday, October 18th , 20:15 to 22:15, Location 113 IST

- You should have let me know by now if you have a conflict

