
Chapter 5: Computer Systems

Organization

Invitation to Computer Science,

C++ Version, Third Edition

Invitation to Computer Science, C++ Version, Third Edition 2

Objectives

In this chapter, you will learn about:

 The components of a computer system

 Putting all the pieces together – the Von

Neumann architecture

 The future: non-Von Neumann architectures

Invitation to Computer Science, C++ Version, Third Edition 3

Introduction

 Computer organization examines the computer

as a collection of interacting “functional units”

 Functional units may be built out of the circuits

already studied

 Higher level of abstraction assists in

understanding by reducing complexity

Invitation to Computer Science, C++ Version, Third Edition 4

Figure 5.1

The Concept of Abstraction

Invitation to Computer Science, C++ Version, Third Edition 5

The Components of a Computer

System

 Von Neumann architecture has four functional

units:

 Memory

 Input/Output

 Arithmetic/Logic unit

 Control unit

 Sequential execution of instructions

 Stored program concept

Invitation to Computer Science, C++ Version, Third Edition 6

Figure 5.2

Components of the Von Neumann Architecture

Invitation to Computer Science, C++ Version, Third Edition 7

Memory and Cache

 Information stored and fetched from memory

subsystem

 Random Access Memory maps addresses to

memory locations

 Cache memory keeps values currently in use in

faster memory to speed access times

Invitation to Computer Science, C++ Version, Third Edition 8

Memory and Cache (continued)

 RAM (Random Access Memory)

 Memory made of addressable “cells”

 Current standard cell size is 8 bits

 All memory cells accessed in equal time

 Memory address

 Unsigned binary number N long

 Address space is then 2N cells

Invitation to Computer Science, C++ Version, Third Edition 9

Figure 5.3

Structure of Random Access Memory

Invitation to Computer Science, C++ Version, Third Edition 10

Memory and Cache (continued)

 Parts of the memory subsystem

 Fetch/store controller

 Fetch: retrieve a value from memory

 Store: store a value into memory

 Memory address register (MAR)

 Memory data register (MDR)

 Memory cells, with decoder(s) to select individual

cells

Invitation to Computer Science, C++ Version, Third Edition 11

Memory and Cache (continued)

 Fetch operation

 The address of the desired memory cell is moved

into the MAR

 Fetch/store controller signals a “fetch,” accessing

the memory cell

 The value at the MAR’s location flows into the

MDR

Invitation to Computer Science, C++ Version, Third Edition 12

Memory and Cache (continued)

 Store operation

 The address of the cell where the value should go

is placed in the MAR

 The new value is placed in the MDR

 Fetch/store controller signals a “store,” copying

the MDR’s value into the desired cell

Invitation to Computer Science, C++ Version, Third Edition 13

Memory and Cache (continued)

 Memory register

 Very fast memory location

 Given a name, not an address

 Serves some special purpose

 Modern computers have dozens or hundreds of

registers

Invitation to Computer Science, C++ Version, Third Edition 14

Figure 5.7

Overall RAM Organization

Invitation to Computer Science, C++ Version, Third Edition 15

Cache Memory

 Memory access is much slower than processing

time

 Faster memory is too expensive to use for all

memory cells

 Locality principle

 Once a value is used, it is likely to be used again

 Small size, fast memory just for values currently

in use speeds computing time

Invitation to Computer Science, C++ Version, Third Edition 16

Input/Output and Mass Storage

 Communication with outside world and external

data storage

 Human interfaces: monitor, keyboard, mouse

 Archival storage: not dependent on constant

power

 External devices vary tremendously from each

other

Invitation to Computer Science, C++ Version, Third Edition 17

Input/Output and Mass Storage

(continued)

 Volatile storage

 Information disappears when the power is turned

off

 Example: RAM

 Nonvolatile storage

 Information does not disappear when the power is

turned off

 Example: mass storage devices such as disks

and tapes

Invitation to Computer Science, C++ Version, Third Edition 18

Input/Output and Mass Storage

(continued)

 Mass storage devices

 Direct access storage device

 Hard drive, CD-ROM, DVD, etc.

 Uses its own addressing scheme to access data

 Sequential access storage device

 Tape drive, etc.

 Stores data sequentially

 Used for backup storage these days

Invitation to Computer Science, C++ Version, Third Edition 19

Input/Output and Mass Storage

(continued)

 Direct access storage devices

 Data stored on a spinning disk

 Disk divided into concentric rings (sectors)

 Read/write head moves from one ring to another

while disk spins

 Access time depends on:

 Time to move head to correct sector

 Time for sector to spin to data location

Invitation to Computer Science, C++ Version, Third Edition 20

Figure 5.8

Overall Organization of a Typical Disk

Invitation to Computer Science, C++ Version, Third Edition 21

Input/Output and Mass Storage

(continued)

 I/O controller

 Intermediary between central processor and I/O

devices

 Processor sends request and data, then goes on

with its work

 I/O controller interrupts processor when request is

complete

Invitation to Computer Science, C++ Version, Third Edition 22

Figure 5.9

Organization of an I/O Controller

Invitation to Computer Science, C++ Version, Third Edition 23

The Arithmetic/Logic Unit

 Actual computations are performed

 Primitive operation circuits

 Arithmetic (ADD, etc.)

 Comparison (CE, etc.)

 Logic (AND, etc.)

 Data inputs and results stored in registers

 Multiplexor selects desired output

Invitation to Computer Science, C++ Version, Third Edition 24

The Arithmetic/Logic Unit (continued)

 ALU process

 Values for operations copied into ALU’s input

register locations

 All circuits compute results for those inputs

 Multiplexor selects the one desired result from all

values

 Result value copied to desired result register

Invitation to Computer Science, C++ Version, Third Edition 25

Figure 5.12

Using a Multiplexor Circuit to Select the Proper ALU Result

Invitation to Computer Science, C++ Version, Third Edition 26

The Control Unit

 Manages stored program execution

 Task

 Fetch from memory the next instruction to be

executed

 Decode it: determine what is to be done

 Execute it: issue appropriate command to ALU,

memory, and I/O controllers

Invitation to Computer Science, C++ Version, Third Edition 27

Machine Language Instructions

 Can be decoded and executed by control unit

 Parts of instructions

 Operation code (op code)

 Unique unsigned-integer code assigned to each

machine language operation

 Address field(s)

 Memory addresses of the values on which

operation will work

Invitation to Computer Science, C++ Version, Third Edition 28

Figure 5.14

Typical Machine Language Instruction Format

Invitation to Computer Science, C++ Version, Third Edition 29

Machine Language Instructions

(continued)

 Operations of machine language

 Data transfer

 Move values to and from memory and registers

 Arithmetic/logic

 Perform ALU operations that produce numeric

values

Invitation to Computer Science, C++ Version, Third Edition 30

Machine Language Instructions

(continued)

 Operations of machine language (continued)

 Compares

 Set bits of compare register to hold result

 Branches

 Jump to a new memory address to continue

processing

Invitation to Computer Science, C++ Version, Third Edition 31

Control Unit Registers And Circuits

 Parts of control unit

 Links to other subsystems

 Instruction decoder circuit

 Two special registers:

 Program Counter (PC)

 Stores the memory address of the next instruction to

be executed

 Instruction Register (IR)

 Stores the code for the current instruction

Invitation to Computer Science, C++ Version, Third Edition 32

Figure 5.16

Organization of the Control Unit Registers and Circuits

Invitation to Computer Science, C++ Version, Third Edition 33

Putting All the Pieces Together—the

Von Neumann Architecture

 Subsystems connected by a bus

 Bus: wires that permit data transfer among them

 At this level, ignore the details of circuits that

perform these tasks: Abstraction!

 Computer repeats fetch-decode-execute cycle

indefinitely

Invitation to Computer Science, C++ Version, Third Edition 34

Figure 5.18

The Organization

of a Von Neumann

Computer

Invitation to Computer Science, C++ Version, Third Edition 35

The Future: Non-Von Neumann

Architectures

 Physical limitations on speed of Von Neumann

computers

 Non-Von Neumann architectures explored to

bypass these limitations

 Parallel computing architectures can provide

improvements: multiple operations occur at the

same time

Invitation to Computer Science, C++ Version, Third Edition 36

The Future: Non-Von Neumann

Architectures (continued)

 SIMD architecture

 Single instruction/Multiple data

 Multiple processors running in parallel

 All processors execute same operation at one

time

 Each processor operates on its own data

 Suitable for “vector” operations

Invitation to Computer Science, C++ Version, Third Edition 37

Figure 5.21

A SIMD Parallel Processing System

Invitation to Computer Science, C++ Version, Third Edition 38

 MIMD architecture

 Multiple instruction/Multiple data

 Multiple processors running in parallel

 Each processor performs its own operations on its

own data

 Processors communicate with each other

The Future: Non-Von Neumann

Architectures (continued)

Invitation to Computer Science, C++ Version, Third Edition 39

Figure 5.22

Model of MIMD Parallel Processing

Invitation to Computer Science, C++ Version, Third Edition 40

Summary of Level 2

 Focus on how to design and build computer

systems

 Chapter 4

 Binary codes

 Transistors

 Gates

 Circuits

Invitation to Computer Science, C++ Version, Third Edition 41

Summary of Level 2 (continued)

 Chapter 5

 Von Neumann architecture

 Shortcomings of the sequential model of

computing

 Parallel computers

Invitation to Computer Science, C++ Version, Third Edition 42

Summary

 Computer organization examines different

subsystems of a computer: memory, input/output,

arithmetic/logic unit, and control unit

 Machine language gives codes for each

primitive instruction the computer can perform,

and its arguments

 Von Neumann machine: sequential execution of

stored program

 Parallel computers improve speed by doing

multiple tasks at one time

