Subject: Microprocessors

8086/8088 Hardware Specifications

By:

Dr. Vandana Gandotra
Deptt of Computer Science
Ram Lal Anand College

9–1 PIN-OUTS AND THE PIN FUNCTIONS

- In this section, we explain the function and the multiple functions of each of the microprocessor's pins.
- In addition, we discuss the DC characteristics to provide a basis for understanding the later sections on buffering and latching.

The Pin-Out

- Figure 9–1 illustrates pin-outs of 8086 & 8088.
 - both are packaged in 40-pin dual in-line packages
 (DIPs)
- 8086 is a 16-bit microprocessor with a 16-bit data bus; 8088 has an 8-bit data bus.
 - 8086 has pin connections AD₀-AD₁₅
 - 8088 has pin connections AD₀-AD₇
- Data bus width is the only major difference.
 - thus 8086 transfers 16-bit data more efficiently

Pin out of the 8086 and 8088 Microprocessor

Figure 9–1 (a) The pin-out of the 8086 in maximum mode; (b) the pin-out of the 8086 in minimum mode.

Power Supply Requirements

- Both microprocessors require +5.0 V with a supply voltage tolerance of +10 percent.
 - 8086 uses a maximum supply current of 360 mA
 - 8088 draws a maximum of 340 mA
- Both microprocessors operate in ambient temperatures of between 32° F and 180° F.
- 80C88 and 80C86 are CMOS versions that require only 10 mA of power supply current.
 - and function in temperature extremes of -40° F
 through +225° F

DC Characteristics

- It is impossible to connect anything to a microprocessor without knowing input current requirement for an input pin.
 - and the output current drive capability for an output pin (Fanout)
- This knowledge allows hardware designers to select proper interface components for use with the microprocessor
 - without the fear of damaging anything

Input Characteristics

- Input characteristics of these microprocessors are compatible with all the standard logic components available today.
- Table 9–1 depicts input voltage levels and the input current requirements for any input pin on either microprocessor.
- The input current levels are very small because the inputs are the gate connections of MOSFETs and represent only leakage currents.

Output Characteristics

- Table 9–2 illustrates output characteristics of all the output pins of these microprocessors.
- The logic 1 voltage level of the 8086/8088 is compatible with most standard logic families.
 - logic 0 level is not
- Standard logic circuits have a maximum logic 0 voltage of 0.4 V; 8086/8088 has a maximum of 0.45 V.
 - a difference of 0.05 V

8086/88 Input and Output Characteristics

Input characteristics of 8086/88

Logic Level	Voltage	Current
0	0.45 V maximum	2.0 mA maximum
1	2.4 V minimum	-400 uA maximum

output characteristics of 8086/88

Logic Level	Voltage	Current
0	0.8 V maximum	+10 uA maximum
1	2.0 V minimum	+10 uA maximum

Pin Connections AD₇ - AD₀

- 8088 address/data bus lines are multiplexed
 - and contain the rightmost 8 bits (Lower-half) of the memory address or I/O port number whenever ALE (Address Latch Enable) is active (logic 1)
 - or data whenever ALE is inactive (logic 0)
- These pins are at their high-impedance state during a hold acknowledge.

Pin Connections A₁₅ - A₈

- 8088 address bus provides the upper-half memory address bits that are present throughout a bus cycle.
- These address connections go to their highimpedance state during a hold acknowledge.

S ₄	S ₃	Characteristics
0 (LOW)	0	Alternate Data (extra segment)
0	1	Stack
1 (HIGH)	0	Code or None
1	1	Data

Pin Connections

- READ- When **read signal** is logic 0, the data bus is receptive to data from memory or I/O devices
 - pin floats high-impedance state during a hold acknowledge
- Ready-Inserts wait states into the timing.
 - if placed at a logic 0, the microprocessor enters into wait states and remains idle
 - if logic 1, no effect on the operation
- Interrupt request is used to request a hardware interrupt.
 - If INTR is held high when IF = 1, 8086/8088
 enters an interrupt acknowledge cycle after the current instruction has completed execution

Pin Connections

- The non-maskable interrupt input is similar to INTR.
 - does not check IF flag bit for logic 1
- if The Test pin is an input that is tested by the WAIT instruction.
 - a) If TEST is a logic 0, the WAIT instruction functions as an NOP.
 - b) If TEST is a logic 1, the WAIT instruction waits for TEST to become a logic 0.
 - c) The TEST pin is most often connected to the 8087 numeric coprocessor.
- RESET-Causes the microprocessor to reset itself if held high a minimum of four clocking periods.
 - when 8086/8088 is reset, it executes instructions at memory location FFFF0H
 - also disables future interrupts by clearing IF flag

Pin Connections

- The **clock** pin provides the basic timing signal.
 - must have a duty cycle of 33 % (high for one third of clocking period, low for two thirds) to provide proper internal timing
- VCC-This **power supply** input provides a +5.0 V, $\pm \pm 10$ % signal to the microprocessor.
- GND-The **ground** connection is the return for the power supply.
 - 8086/8088 microprocessors have two pins labeled GND—both must be connected to ground for proper operation
- Minimum/maximum mode pin selects either minimum or maximum mode operation.
 - if minimum mode selected, the MN/MX pin must be connected directly to +5.0 V
- The **bus high enable** pin is used in 8086 to enable the **most-significant** data bus bits
 - $(D_{15}-D_8)$ during a read or a write operation.
 - The state of S_7 is always a logic 1.