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Remedies
1. Obtain more data The harmful multicollinearity arises essentially 

because rank of X X' falls below k and X X' is close to zero. Additional 
data may help in reducing the sampling variance of the estimates. The 
data need to be collected such that it helps in breaking up the 
multicollinearity in the data. It is always not possible to collect 
additional data to various reasons as follows.

• The experiment and process have finished and no longer available. 
• The economic constrains may also not allow to collect the additional 

data. 
• The additional data may not match with the earlier collected data and 

may be unusual.
• If the data is in time series, then longer time series may force to take 

ignore data that is too far in the past. 
• If multicollinearity is due to any identity or exact relationship, then 

increasing the sample size will not help. 
• Sometimes, it is not advisable to use the data even if it is available. For 

example, if the data on consumption pattern is available for the years 
1950-2010, then one may not like to use it as the consumption pattern 
usually does not remains same for such a long period.



2. Omitting the Variables

If possible, identify the variables which seems to causing 
multicollinearity. These collinear variables can be dropped 
so as to match the condition of fall rank of X − matrix. The 
process of omitting the variables way be carried out on the 
basis of some kind of ordering of explanatory variables, 
e.g., those variables can be deleted first which have smaller 
value of t -ratio. In another example, suppose the 
experimenter is not interested in all the parameters. In 
such cases, one can get the estimators of the parameters of 
interest which have smaller mean squared errors them the 
variance of OLSE by dropping some variables. If some 
variables are eliminated, then this may reduce the 
predictive power of the model. Sometimes there is no 
assurance that how the model will exhibit less 
multicollinearity.



3. Model re-specification

• One approach to model respecification is to 
redefine the regressors. For example, if x1, x2 
and x3 are nearly linearly dependent, it may 
be possible to find some function such as x = 
(x1 +x2 )/ x3 or x = x1x2x3  that preserves the 
information content in the original regressors
but reduces the ill conditionin



4. Use of prior information

• Suppose we consider the model

• Yi = β1 + β2X2i + β3X3i + ui

• where Y = consumption, X2 = income, and X3 = 
wealth. As noted before, income and wealth 
variables tend to be highly collinear. But suppose 
a priori we believe that β3 = 0.10β2; that is, the 
rate of change of consumption with respect to 
wealth is one-tenth the corresponding rate with 
respect to income. We can then run the following 
regression:



Yi = β1 + β2X2i + 0.01β2X3i + ui

Yi = β1 + β2Xi

where Xi = X2i + 0.1X3i. Once we obtain estimate 
of β2 we can estimate β3.

How does one obtain a priori information?

• It could come from previous empirical work in 
which the collinearity problem happens to be 
less serious

• or from the relevant theory underlying the 
field of study



5. Combining cross-sectional and time 
series data

A variant of the extraneous or a priori 
information technique is the combination of 
crosssectional and time-series data, known as 
pooling the data

• To study the demand for automobiles in the 
United States and assume we have time series 
data on the number of cars sold, average price 
of the car, and consumer income. Suppose 
also that.



• lnYi = β1 + β2 ln Ii + β3 ln Pi + ui

• where Y = number of cars sold, P = average 
price, I = income, and t = time. Out objective is 
to estimate the price elasticity β2 and income 
elasticity β3.

• In time series data the price and income 
variables generally tend to be highly collinear. 
Therefore, if we run the preceding regression, 
we shall be faced with the usual 
multicollinearity problem.



• If we have cross-sectional data (for example, 
data generated by consumer panels, or budget 
studies conducted by various private and 
governmental agencies), we can obtain a fairly 
reliable estimate of the income elasticity β3 
because in such data, which are at a point in 
time, the prices do not vary much. Then using 
an estimate of β3 we can write the preceding 
time series regression as 

• Yi* = β1 + β3 ln Pi + ui where Y* = ln Y − β^2
ln I



• That is, Y* represents that value of Y after 
removing from it the effect of income. We can 
now obtain an estimate of the price elasticity β2 
from the preceding regression.

• Although it is an appealing technique, pooling the 
time series and crosssectional data in the manner 
just suggested may create problems of 
interpretation, because we are assuming 
implicitly that the cross-sectionally estimated 
income elasticity is the same thing as that which 
would be obtained from a pure time series 
analysis



6. Additional or new data

• Since multicollinearity is a sample feature, it is 
possible that in another sample involving the 
same variables collinearity may not be so 
serious as in the first sample. Sometimes 
simply increasing the size of the sample (if 
possible) may attenuate the collinearity
problem.



7. Transforming the model

Suppose Yi = β1 + β2X2i + β3X3i + ui (1)

holds at time t, it must also hold at time t − 1 because the origin of time is

arbitrary anyway. Therefore, we have

Yt−1 = β1 + β2X2,t−1 + β3X3,t−1 + ut−1 (2)

If we subtract (2) from (1), we obtain

Yt − Yt−1 = β2(X2t − X2,t−1) + β3(X3t − X3,t−1) + vt (4)

where vt = ut − ut−1. Equation (4) is known as the first difference

form because we run the regression, not on the original variables, but on the 
differences of successive values of the variables.

The first difference regression model often reduces the severity of 
multicollinearity because, although the levels of X2 and X3 may be highly 
correlated, there is no a priori reason to believe that their differences will also 
be highly correlated.



• Another commonly used transformation in 
practice is the ratio transformation.

• Consider : Yi = β1 + β2X2i + β3X3i + ui (1)

• where Y is consumption expenditure in real 
dollars, X2 is GDP, and X3 is total population. 
Since GDP and population grow over time, 
they are likely to be correlated. One “solution” 
to this problem is to express the model on a 
per capita basis, that is, by dividing (1) by X3, 
to obtain



• Such a transformation may reduce collinearity
in the original variables. But the first-
difference or ratio transformations are not 
without problems.

• For instance, the error term vt in (2) may not 
satisfy one of the assumptions of the classical 
linear regression model, namely, that the 
disturbances are serially uncorrelated.



• Therefore, the remedy may be worse than the 
disease. Moreover, there is a loss of one 
observation due to the differencing 
procedure, and therefore the degrees of 
freedom are reduced by one. In a small 
sample, this could be a factor one would wish 
at least to take into consideration. 
Furthermore, the first-differencing procedure 
may not be appropriate in cross-sectional data 
where there is no logical ordering of the 
observations.



• Similarly, in the ratio model, the error 
term(Ui/X3i) will be heteroscedastic, if the 
original error term ut is homoscedastic



8. Ridge regression

• Ridge Regression is a technique for analyzing 
multiple regression data that suffer from 
multicollinearity. In ridge regression, the first step 
is to standardize the variables (both dependent 
and independent) by subtracting their means and 
dividing by their standard deviations. Each 
diagonal element is then multiplied by (1+d) 
where d is small. We can start with very small 
value of d say .01 and keep on increasing it till the 
resulting estimates of the regression parameters 
are stable or do not vary much.



9. Principal Component Regression
The principal component regression is based on the technique of 

principal component analysis. The k explanatory variables are 
transformed into a new set of orthogonal variables called as 
principal components. The principal components involves the 
determination of a set of linear combinations of explanatory 
variables such that they retain the total variability of the system 
and these linear combinations are mutually independent of each 
other. Such obtained principal components are ranked in the 
order of their importance. The importance being judged in terms 
of variability explained by a principal component relative to the 
total variability in the system. The procedure then involves 
eliminating some of the principal components which contribute 
in explaining relatively less variation. After elimination of the 
least important principal components, the set up of multiple 
regression is used by replacing the explanatory variables with 
principal components. 



• Then study variable is regressed against the set of 
selected principal components using ordinary 
least squares method. Since all the principal 
components are orthogonal, they are mutually 
independent and so OLS is used without any 
problem. Suppose there are k explanatory 
variables X1, X2, …, Xk. Consider the linear 
function li, l2, … lk say

• L1  = a1X1 +a2X2+… + akXk
• L2 = b1X1 + b2X2 +…. +bkXk etc.
We choose ai’s such that variance of li is maximum 

subject to the condition that a1^2+a2^2+…+ak^2 
= 1 (called normalization condition). Then l1 is 
said to be the first component.



• It is a linear function of x’s such that it has 
maximum variance. We consider l2 such that 
it is uncorrelated to l1 and it maximizes 
variance subject to condition 
b1^2+b2^2+…+bk^2 = 1 Then l2 is called 
second principal component. Following this 
procedure we find l1, l2, …, lk These principal 
components have the property that

• ∑ var (li) = ∑ var (Xi) Unlike Xi’s which are 
highly correlated li’s are mutually orthogonal.



• It is suggested that instead of regressing Y on 
Xi’s regress Y on li’s. But there are two 
problems:

(i) l1 though it picks up major portion of 
variance of X’s need not necessarily be the 
one that is most correlated with Y. Infact there 
is no necessary relationship between order of 
principal components  and the degree of their 
correlation with Y. Often l1, l2, …, lk have no 
meaningful economic interpretation. If we 
regress Y on li’s and then substitute li’s in



• Terms of Xi’s we finally get the same answer as 
before. So there is a point in using principal 
component analysis only if we regress Y on a 
subset of li’s.

10. Stepwise regression



11. Reducing collinearity in 
polynomial regressions

• polynomial regression models. A special feature of these
models is that the explanatory variable(s) appear with
various powers. Thus, in the total cubic cost function
involving the regression of total cost on output,
(output)2, and (output)3 the various output terms are
going to be correlated, making it difficult to estimate the
various slope coefficients precisely In practice though, it
has been found that if the explanatory variable(s) are
expressed in the deviation form (i.e., deviation from the
mean value), multicollinearity is substantially reduced.
But even then the problem may persist in which case one
may want to consider techniques such as orthogonal
polynomials.


