Unique Paper Code	$:$	$62351101 _O C$
Name of the Paper	$:$	Calculus
Name of the Course	$:$	B.A. (Prog.) I Year
Semester	$:$	I
Duration	$:$	3 Hours
Maximum Marks	$:$	75 Marks

Attempt any four questions. All questions carry equal marks.

1. Find the limit of the given functions
(i) $\lim _{x \rightarrow 0} \frac{x \cos x-\sin }{x^{2} \sin x}$
(ii) $\lim _{x \rightarrow 0} \frac{1}{1+e^{1 / x}}$.

Discuss the continuity and discontinuity of following functions,
(i) $f(x)=|x-1|+|x-2|$ at $x=1 \& x=2$
(ii) $f(x)=\left\{\begin{array}{cl}\frac{x e^{1 / x}}{1+e^{1 / x}}, & \text { if } x \neq 0, \\ 0, & \text { if } x=0,\end{array}\right.$ at $x=0$.

Can a function have more than one limit? Explain.
2. If $y=\sin m x+\cos m x$, then show that $y_{n}=m^{n}\left[1+(-1)^{n} \sin 2 m x\right]^{1 / 2}$.

State Leibnitz's theorem. If $y=\sin ^{-1} x$ then prove that

$$
\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0 .
$$

If $u=x^{2} \tan ^{-1}\left(\frac{x}{y}\right)-y^{2} \tan ^{-1}\left(\frac{x}{y}\right)$ then prove that

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

3. Prove that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2021$ touches the straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b), whatever be the value of n.

Show that normal at any point of the curve

$$
x=a \cos \theta+a \theta \sin \theta, y=a \sin \theta-a \theta \cos \theta
$$

is at constant distance from origin.
Find the curvature at any point θ on the curve

$$
y=a\left(\cos \theta+\log \left(\tan \left(\frac{\theta}{2}\right)\right)\right), y=\operatorname{asin} \theta
$$

4. Find asymptotes of the curve $(y-3)^{2}\left(x^{2}-9\right)=x^{4}+81$.

Determine the position and nature of double points on the curve

$$
x^{4}-2 y^{3}-3 y^{2}-2 x^{2}+1=0
$$

Trace the curve $x^{2} y^{2}=x^{2}-25 a^{2}$.
5. State Lagrange's mean value theorem and give its geometrical interpretation. Applying Lagrange's mean value to the function defined by $f(x)=\log (1+x) \forall x>0$ show that

$$
0<[\log (1+x)]^{-1}-x^{-1}<1 \text { whenever } x>0
$$

Separate the interval in which the function defined on \mathbb{R}

$$
f(x)=2 x^{3}-15 x^{2}+36 x-1
$$

is increasing or decreasing.
Prove that $\tan x>x$ whenever $0<x<\pi / 2$.
6. Obtain Maclaurin's series expansion of $\cos 2 x$.

Evaluate $\lim _{x \rightarrow 0} \frac{\sin x-x}{x \sin x}$
Find the maximum value of $\left(\frac{1}{x}\right)^{x}$.

