Unique Paper Code	:	62351101_OC
Name of the Paper	:	Calculus
Name of the Course	:	B.A. (Prog.) I Year
Semester	:	I
Duration	:	3 Hours
Maximum Marks	:	75 Marks

Attempt any four questions. All questions carry equal marks.

1. Find the limit of the given functions

(i)
$$\lim_{x \to 0} \frac{x \cos x - \sin}{x^2 \sin x}$$
 (ii) $\lim_{x \to 0} \frac{1}{1 + e^{1/x}}$.

Discuss the continuity and discontinuity of following functions,

(i)
$$f(x) = |x - 1| + |x - 2|$$
 at $x = 1 \& x = 2$
(ii) $f(x) = \begin{cases} \frac{xe^{1/x}}{1 + e^{1/x}}, & \text{if } x \neq 0, \\ 0, & \text{if } x = 0, \end{cases}$ at $x = 0$.

Can a function have more than one limit? Explain.

2. If $y = \sin mx + \cos mx$, then show that $y_n = m^n [1 + (-1)^n \sin 2mx]^{1/2}$.

State Leibnitz's theorem. If $y = \sin^{-1} x$ then prove that

$$(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$$

If $u = x^2 \tan^{-1}\left(\frac{x}{y}\right) - y^2 \tan^{-1}\left(\frac{x}{y}\right)$ then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}.$

3. Prove that the curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2021$ touches the straight line $\frac{x}{a} + \frac{y}{b} = 2$ at the point (a, b), whatever be the value of *n*.

Show that normal at any point of the curve

 $x = a\cos\theta + a\theta\sin\theta$, $y = a\sin\theta - a\theta\cos\theta$

is at constant distance from origin.

Find the curvature at any point θ on the curve

$$y = a\left(\cos\theta + \log\left(\tan\left(\frac{\theta}{2}\right)\right)\right), y = a\sin\theta.$$

4. Find asymptotes of the curve $(y - 3)^2(x^2 - 9) = x^4 + 81$.

Determine the position and nature of double points on the curve

$$x^4 - 2y^3 - 3y^2 - 2x^2 + 1 = 0$$

Trace the curve $x^2y^2 = x^2 - 25a^2$.

5. State Lagrange's mean value theorem and give its geometrical interpretation. Applying Lagrange's mean value to the function defined by $f(x) = \log(1 + x) \forall x > 0$ show that

 $0 < [\log(1+x)]^{-1} - x^{-1} < 1$ whenever x > 0.

Separate the interval in which the function defined on \mathbb{R}

$$f(x) = 2x^3 - 15x^2 + 36x - 1$$

is increasing or decreasing.

Prove that $\tan x > x$ whenever $0 < x < \pi/2$.

6. Obtain Maclaurin's series expansion of $\cos 2x$.

Evaluate
$$\lim_{x \to 0} \frac{\sin x - x}{x \sin x}$$

Find the maximum value of $\left(\frac{1}{x}\right)^x$.