Name of the Course	$:$ B.A.(Prog.)
Unique Paper Code	$: 62354343 _$OC
Name of the Paper	$:$DSC- Analytical Geometry and Applied Algebra
Semester	$:$III
Duration	$: 3$ Hours
Maximum Marks	$: 75$ Marks

Attempt any four questions. All questions carry equal marks.

1. Find the vertex, focus and the equation to the directrix of the parabola $y^{2}-4 x-4 y=0$. Sketch the conic $4 x^{2}+3 y^{2}=48$. Find an angle through which the rectangular coordinate axes must be rotated to eliminate the $x y$ term from the equation $3 x^{2}+\sqrt{3} x y+2 y^{2}+2=$ 0 .
2. Sketch the parabola $(y-2)^{2}=8(x+1)$. Find the equation to the hyperbola referred to its axes as coordinate axes, the distance between the foci is 16 and the eccentricity is $\sqrt{2}$. If the tangent line to an ellipse at a point P makes an angle α with the line joining P to one focus S_{1} of the ellipse, then find the angle that the tangent line to the ellipse at the point P makes with the line joining P to the other focus S_{2} of the ellipse.
3. Describe the surface S whose equation is given by
$3 x^{2}+3 y^{2}+3 z^{2}+30 x+12 y+6 z-102=0$.
Find the equation of the sphere with center same as that of S and tangent to the $x y$-plane.
4. Define skew lines. Find if the following lines L_{1} and L_{2} are skew lines.
$L_{1}: x=-1+4 t, y=3+t, \quad z=1$
$L_{2}: x=-13+12 t, \quad y=1+6 t, z=2+3 t$.
Further, find a vector orthogonal to both L_{1} and L_{2}.
5. Find the equation to the plane through the points $P_{1}(1,2,-1)$ and $P_{2}(0,1,4)$ and perpendicular to the plane $2 x+y-z+1=0$.
6. Does there exist a feasible matching for the following graph? Find if any.

