[This question paper contains 7 printed pages]

Your Roll No. :

Sl. No. of Q. Paper : 1832 GC-4

Unique Paper Code : 32371202

Name of the Course : B.Sc.(Hons.) Statistics

Name of the Paper : Algebra

Semester : II

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates:

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) Attempt six questions in all.
- (c) Selecting three from each Section.

SECTION - A

1. (a) Form a cubic equation whose roots are the values of α , β , γ given by the relations

$$\sum \alpha = 3$$
, $\sum \alpha^2 = 5$, $\sum \alpha^3 = 11$. Hence find the value of $\sum \alpha^4$.

(b) If α , β , β are the roots of the cubic equation $x^2 + px^2 + qx + r = 0$, then form the equation whose roots are:

 $\frac{\alpha}{\beta+\gamma-\alpha}$, $\frac{\beta}{\gamma+\alpha-\beta}$, $\frac{\gamma}{\alpha+\beta-\gamma}$,

 $6\frac{1}{2}$

2. (a) Solve the equation: $3x^4 - 8x^3 + 21x^2 - 20x + 5 = 0$, given that the sum of two of its roots is equal to the sum of the other two.

 $6\frac{1}{2}$

- (b) Do the following vectors $a_1 = [1, 5, 7], a_2 = [4, 0, 6], a_3 = [1, 0, 0] \text{ form a basis for E}^3?$
- (c) Given the basis vectors [1, 0, 0], [1,1,1], [0, 1,0] for E³. Which vector can be removed from the basis and can be replaced by [4,3,3], while still maintaining a basis?

3. (a) Define a circulant determinant. Show that

a b c d
d a b c
c d a b
b c d a

has $a + b + c\lambda^2 + d\lambda^3$ as a factor where λ is a root of $x^4=1$. Hence show that the determinant is equal to $(a+b+c+d)(a-b+c-d)\{(a-c)^2+(b-d)^2\}$.

(b) Express

$$\begin{vmatrix} (1+ax)^2 & (1+ay)^2 & (1+az)^2 \\ (1+bx)^2 & (1+by)^2 & (1+bz)^2 \\ (1+cx)^2 & (1+cy)^2 & (1+cz)^2 \end{vmatrix}$$

as a product of two determinants and hence

evaluate it. $6\frac{1}{2}$

3

P.T.O.

4. (a) Solve the following system of equations with the help of Cramer's rule:

 $6\frac{1}{2}$

4

$$ax + by + cz = k,$$

 $a^{2}x + b^{2}y + c^{2}z = k^{2},$
 $a^{3}x + b^{3}y + c^{3}z = k^{3}.$

- (b) When is a matrix said to be in:
 - (i) Echelon form,
 - (ii) Reduced echelon form?
- (c) Find the area of the parallelogram whose vertices are
 - (-2, -2), (0,3), (4,-1), (6, 4).

SECTION - B

5. (a) If B and C are square matrices of order n and if A=B+C, then show that:

 $A^{P+1}=B^{P}[B+(p+1)C]$, provided B and C commute, $C^{2}=0$ and p is a positive integer.

(b) Define Orthogonal and Unitary matrices. If A is a square matrix, $A - \frac{1}{2}I$ and $A + \frac{1}{2}I$ are orthogonal (I is an identity matrix of order same as A), then prove that A is skew symmetric and $A^2 = -\frac{3}{4}I$. Also deduce that

A is of even order. $6\frac{1}{2}$

- 6. (a) Define elementary matrices. Show that elementary matrices are non-singular.

 Also obtain their inverses.
 - (b) Find the characteristic roots of the matrix

$$A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & -3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

and show that the characteristic vectors associated with its distinct characteristic roots are mutually orthogonal.

 $6\frac{1}{2}$

5

- 7. (a) State Cayley-Hamilton theorem. Given $A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$, express $A^4 4A^3 A^2 + 2A 5I$ as a linear polynomial in A and hence evaluate it.
 - (b) Reduce the real quadratic form $3x^2-3y^2-5z^2-2xy-6yz-6zx$ to its canonical form and find its rank, signature and index.

 $6\frac{1}{2}$

- 8. (a) If G is a generalized inverse of X'X, then prove that:
 - (i) G' is also a generalized inverse of X'X,
 - (ii) XGX'X=X,
 - (iii)XGX' is invariant of G,
 - (iv) XGX' is symmetric whether G is symmetric or not.

(b) Derive the formula to find the inverse of a non-singular matrix M of order nxn, partitioned as:

$$\mathbf{M} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix},$$

Where α , β , γ and δ are the block matrices of order sxs, sxm, mxs and mxm respectively, and α is a non-singular matrix.

 $6\frac{1}{2}$