Question Bank

B.Sc(H) Mathematics-IV Sem

Riemann Integration and Series of Functions

Q1. Define f(x) = [x] on [0,3]. Show that f is integrable and evaluate $\int_0^3 f(x) dx$.

Q2. Find the radius of convergence of the series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$.

- Q3. Suppose f is continuous function on [a,b], $f(x) \ge 0 \forall x \in [a, b]$. Then show that if $\int_a^b f(x)dx = 0$, then $f(x) = 0 \forall x \in [a, b]$.
- Q4. Let *f* and *g* be continuous functions on [a,b] such that $\int_a^b f = \int_a^b g$. Prove that there exist $x \in [a, b]$ such that f(x) = g(x).
- Q5. (a) Give an example of a function f on [0,1] which is not integrable but |f| is integrable.

(b)Show that if *f* is continuous real-valued function on [a,b] such that $\int_a^b f \cdot g = 0$ for every continuous function *g* on [a,b] then show that f(x) = 0, for all $x \in [a, b]$.

Q6. Let $f \ge 0$ be integrable function on [a,b]. Is \sqrt{f} integrable on [a, b]?

Q7. Let
$$f(x) = \sin \frac{1}{x}$$
 for $x \neq 0$ and $(0) = 0$. Show f is integrable on [-1, 1].

- Q8. Let (f_n) be a sequence of integrable functions on [a, b], and suppose $f_n \to f$ uniformly on [a, b]. Prove that f is integrable on [a, b] and $\int_a^b f = \lim_{n \to \infty} \int_a^b f_n$.
- Q9. Show that if a > 0, then (f_n) defined as $f_n(x) = tan^{-1}(nx)$ converges uniformly to $f(x) = \frac{\pi}{2} sgn(x)$ on the interval $[a, \infty)$ but is not uniformly convergent on $(0, \infty)$.
- Q10. Prove that $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ converges absolutely.
- Q11. Let $f_n(x) = \frac{1}{(1+x)^n}$ for $x \in [0,1]$. Find the pointwise limit f of the sequence (f_n) on [0,1]. Does (f_n) converges uniformly to f on [0,1]?
- Q12. Suppose a sequence (f_n) converges uniformly to f on the set A, and suppose that each f_n is bounded on A. Show that the function f is bounded on A.

- Q13. Prove that $\limsup (|na_n|^{\frac{1}{n}}) = \limsup (|a_n|^{\frac{1}{n}}).$
- Q14. Let $f(x) = \sum a_n x^n$ for |x| < R. If f(x) = f(-x) for all |x| < R, show that $a_n = 0$ for all odd n.
- Q15. (a)Give an example of an integrable function which has an infinite set of points of discontinuity having only one limit point.

(b)Give an example of a Riemann integrable function which is not monotonic.

Q16. Show that every continuous function on [a,b] is integrable. Is the converse true? Justify.

Q17. Define g:[0,2]
$$\rightarrow$$
 [0,4] by g(x)=x² and let P={0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2}. Find U(g,P).

- Q18. Prove that the bounded function f is integrable iff for each $\epsilon > 0$ there exist $\delta > 0$ such that U(f,P)-L(f,P)< ϵ whenever mesh(P)< δ , \forall partitions P of [a,b].
- Q19. Is the sequence $< f_n = \frac{1}{n} sin(nx + n) >$ uniformly convergent on R? Justify your answer.
- Q20. Suppose a sequence $\langle f_n \rangle$ converges uniformly to f on a set A such that each f_n bounded on A. Show that limit function f is bounded on A.
- Q21. Show that if 0 < b < 1, then the convergence of the sequence $f_n = \frac{x^n}{1+x^n}$, for x in R, $x \ge 0$ is uniform on the interval [0, b] but not uniform on the interval [0,1].
- Q22. Let $f_n(x) = \frac{1}{(1+x)^n}$ for $x \in [0,1]$, $n \in \mathbb{N}$. Find the pointwise limit f of the sequence $< f_n >$ on [0,1]. Does $< f_n >$ converge uniformly to f on [0,1]?
- Q23. Let $f_n(x) = \frac{\sin nx}{1+nx}$ for $x \ge 0$. Show that the sequence $\langle f_n \rangle$ converges only pointwise on $[0,\infty)$ and converges uniformly on $[a,\infty)$, a > 0.