Name of the Course	$:$ CBCS B.Sc. (\mathbf{H}) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 3 0 1}$ OC
Name of the Paper	$: \mathbf{C} \mathbf{5}$-Theory of Real Functions
Semester	$:$ III
Duration	$: \mathbf{3}$ Hours
Maximum Marks	$: \mathbf{7 5}$

Attempt any four questions. All questions carry equal marks.

1. Find the limit

$$
\lim _{x \rightarrow 1} \frac{x^{2}-x+1}{x+1}
$$

and establish it by using $\varepsilon-\delta$ definition of the limit of a function.
Suppose that $\lim _{x \rightarrow c} f(x)=L$ where $L>0$ and $\lim _{x \rightarrow c} g(x)=\infty$. Show that $\lim _{x \rightarrow c} f(x) g(x)=\infty$. If $L=0$ then show by example that the conclusion may fail.
Let $x>0$ and let $[x]$ denotes the greatest integer less than equal to x, then find

$$
\lim _{x \rightarrow 0^{+}}\left\{x\left(\left[\frac{1}{x}\right]+\left[\frac{2}{x}\right]+\cdots+\left[\frac{7}{x}\right]\right)\right\} .
$$

2. Use sequential criterion of continuity to prove that the function
$f(x)=\left\{\begin{array}{cc}\frac{\sin }{x}, & \text { if } x \neq 0, \\ 1, & \text { if } x=0,\end{array}\right.$
is continuous at 0 .
Let $S=\{x \in \mathbb{R}: f(x)=0\}$ be the zero set of a function f. If $\left\{x_{n}\right\}$ is a sequence in S and $\lim _{n \rightarrow \infty} x_{n}=x$, Show that $x \in S$.

Let $I=[0, \pi / 2]$ and let $f: I \rightarrow \mathbb{R}$ be defined by $f(x)=\sup \left\{x^{2}, \cos x\right\}, x \in I$. Show that there exists an absolute minimum point $x_{0} \in I$ for f on I. Also show that x_{0} is a solution of the equation $\cos x=x^{2}$.
3. Prove that a continuous real valued function defined on a closed and bounded interval is uniformly continuous therein.

Prove the inequality $\frac{x-1}{x}<\log x<x-1$ for $x>1$, by using mean valve theorem.
Show that the function $f(x)=\frac{1}{1+x^{2}}, x \in \mathbb{R}$ is uniformly continuous on \mathbb{R}.
4. Suppose that f is a real valued function on \mathbb{R} and that $f(a) . f(b)<0$ for some $a, b \in \mathbb{R}$. Prove that there exists x between a and b such that $f(x)=0$.
Show that a continuous function $f:[0,1] \rightarrow[0,1]$, has a fixed point.
State and prove the chain rule of differentiation and use it differentiate the function $\sin (\sqrt{1+\cos 2 x})$.
5. If f is continuous in $[a, b]$ and differentiable in (a, b) then prove that there exists at least one $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{3 c^{2}}=\frac{f(b)-f(a)}{b^{3}-a^{3}}
$$

Prove that $\sin ^{2} \theta<\theta \cdot \sin (\sin \theta)$ for $0<\theta<(\pi / 2)$.
Determine the interval in which the function $f(x)=e^{\sqrt{x}}$ is convex.
6. Use Taylor's theorem to approximate $\sin (0.4)$ by fourth degree polynomial and determine the accuracy of the approximation.
Obtain the Maclaurin series expansion of the function $\cos ^{2} 2 x$.
Show that $e^{\pi}>\pi^{e}$.

