Name of Course

Unique Paper Code

Name of Paper

Semester

Duration

Maximum Marks
: 32351303_OC

: C 7-Multivariate Calculus

: III
: 3 hours
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Let $z(x, y)$ be a function of two independent variables x and y. How many second order partial derivatives of $z(x, y)$ may exist? Write expressions for all these partial derivatives using the increment h in x and k in y. Let

$$
f(x, y, z)=x^{3} y z+y^{3} z x+z^{3} x y
$$

x, y and z being independent variables, find functions $A(x, y, z), B(x, y, z), C(x, y, z)$ and the constant m such that

$$
\begin{gathered}
\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=x^{2} A(x, y, z)+y^{2} B(x, y, z)+z^{2} C(x, y, z) \\
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=m x y z .
\end{gathered}
$$

and

Further, assuming that the limit exists, show that

$$
\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{f(x, y, z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}=0
$$

2. Find the absolute extrema of the function $f(x, y)=2 \sin x+\cos y$ on S where S is the rectangular region with vertices $(2,0),(2,5),(-2,0),(-2,5)$.

How the result is affected and why if the rectangular region S is changed to be with vertices $(0,0),(2,0),(2,5),(0,5) ?$
3. Verify Green's Theorem for the line integral

$$
\oint_{C}\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y
$$

where the contour C is the boundary of the region defined by $y^{2}=8 x$ and $x=2$.
Also find the area enclosed by this closed curve C.
4. Using a suitable transformation evaluate the following integrals
(i) $\int_{1}^{2} \int_{\frac{1}{y}}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{x y}} d x d y$
(ii) $\quad \int_{0}^{1} \int_{0}^{1-x} \sqrt{(x+y)}(y-2 x)^{2} d y d x$.
5. If $\vec{F}(x, y, z)=2 x y \hat{\imath}+y z^{2} \hat{\jmath}+x z \hat{k}$ and S is the surface of the region bounded by $x=0, y=0$, $z=0, y=3$ and $x+2 z=6$ then apply Divergence Theorem to evaluate

$$
\iint_{S} \vec{F} \cdot \widehat{N} d S
$$

Also find the volume of the region bounded by the surface S.
6. Find the work done in moving a particle in the force field

$$
\vec{F}(x, y, z)=3 x^{2} \hat{\imath}+(2 x z-y) \hat{\jmath}+z \hat{k}
$$

along
(i) straight line from $A(0,0,0)$ to $B(2,1,3)$,
(ii) parametric curve C : $x=2 t^{2}, y=t, z=4 t^{2}-t$ from $t=0$ to $t=1$,
(iii) cartesian curve $C: x^{2}=4 y, 3 x^{3}=8 z$ from $x=0$ to $x=2$.

