Unique Paper Code
Name of Course
Name of Paper
Semester
Duration
Maximum Marks
: 32351501

: B.Sc. (H) Mathematics

: C11-Metric Spaces

: V
: 3 Hours
: 75

Attempt any four questions. All questions carry equal marks.

1. Prove that a metric space (X, d) is compact if and only if every collection of closed sets in X with empty intersection has a finite subcollection with empty intersection.

Do there exist onto continuous functions

$$
\begin{gathered}
f_{1}:[0,1] \rightarrow \mathbb{Q} \\
f_{2}:[0,1] \rightarrow[2,3] \cup[4,5] \\
f_{3}:[0,1] \rightarrow(5,7) \\
f_{4}:[0,1] \rightarrow[2,4] \\
f_{5}:[0,1] \rightarrow(10,+\infty) \\
f_{6}:[0,1] \rightarrow(0,1] \\
f_{7}:(1, \infty) \rightarrow(0,1) .
\end{gathered}
$$

If yes, give the explicit expression for the function. If no, then clearly state the reason.
2. Let $X=\mathbb{R}, d_{1}$ be the usual metric and d_{2} be the discrete metric. Let $A=(0,1) \cup\{5\}$. Find the interior, derived set, closure and diameter of A in the metric spaces $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$. Also, find the distance between the point 7 and the set A in the metric spaces $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$.

Give an example of an open dense subset of (X, d_{1}) which is uncountable. Are the metric spaces $\left(X, d_{1}\right)$ and $\left(X, d_{2}\right)$ separable? Justify.

Prove that the function $f:\left(X, d_{2}\right) \rightarrow\left(X, d_{1}\right)$ defined by $f(x)=x$ is continuous, one-one and onto, but not a homeomorphism.
($8+2+1+4+3.75$)
3. Let $X=\mathbb{R}^{2}$ with Euclidean metric d. Prove that (X, d) is a complete metric space.

Verify the Cantor Intersection Theorem for the sequence $\left(F_{n}\right)$ of subsets of X, where $F_{n}=\bar{S}((0,0), 1 / n)$ where $\bar{S}(x, r)$ denotes the closed ball centred at x and radius r.
Determine which of the following subsets of $\left(\mathbb{R}^{2}, d\right)$ are complete? Justify your answer in each case.

$$
\begin{gathered}
A_{1}=\{(x, y): y=x\} \\
A_{2}=\{(x, y): x>0\} \\
A_{3}=\{(x, y): x=0\} \cup\{(x, y): y=0\} \\
A_{4}=\{(x, y): 1<y<2\} .
\end{gathered}
$$

Prove that the metrics d and d_{∞} are equivalent on \mathbb{R}^{2}, where $d_{\infty}(x, y)=\max \left\{\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right\}$ for $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$. Is ($\left.X, d_{\infty}\right)$ a complete metric space? Justify.
$(4+4+4+4+2.75)$
4. Let $X=\mathbb{R}$ with usual metric and $Y=[0,1)$. Show that the subsets $F_{1}=[0,0.2]$ and $F_{2}=[0.8,1)$ are closed in Y. Also, show that the subsets $G_{1}=(0.1,0.2)$ and $[0,0.4)$ are open in Y. Find the interior and closure of the subsets $(0,0.5),(0.5,1)$ and $[0,1)$ in Y. Prove that Y is a separable metric space. Is Y complete? Is Y connected? Is Y compact? Justify your answer in each case. (2+2+6+2.75+2+2+2)
5. If $\left(X, d_{X}\right)$ is a disconnected metric space, prove that there exists a continuous function $f:\left(X, d_{X}\right) \rightarrow$ (\mathbb{R}, d) which does not have Intermediate Value Property. Hence or otherwise prove that every continuous function f on the interval $[-1,1]$ with $|f(x)| \leq 1 \forall x \in[-1,1]$ has a fixed point.

What can be said about the connectedness of \mathbb{Q}, w.r.t. the metric

$$
d(x, y)=\frac{|x-y|}{1+|x-y|} ?
$$

Justify.
For a subset Y of \mathbb{R} such that $(0,1) \subset Y \subset[0,1]$, what can be concluded about its connectedness and why?

Is the diameter of a connected set zero? Justify your answer by an example.
Give an example of an infinite connected set with finite diameter.
$(5+4+4+2+1.75+2)$
6. For a metric space (X, d) and a continuous function f from X into itself, show that the set of points $\{x: f(x)=x\}$ is a closed subset of X.
If f is a continuous function from a compact metric space $\left(X, d_{X}\right)$ into an arbitrary metric space (Y, d_{Y}), prove that f is uniformly continuous and the image of X under f is compact.

Further, in addition if $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ both are homeomorphic, what can be concluded about Y ? Justify.

Hence prove that there exist $x_{1}, x_{2} \in[a, b]$ such that $f\left(x_{1}\right)=\sup _{x \in[a, b]} f(x)$ and $f\left(x_{2}\right)=$ $\inf _{x \in[a, b]} f(x)$, where $f:[a, b] \rightarrow \mathbb{R}$ is such that $f(t)=\alpha t+\beta$, for some α and β in \mathbb{R}.

