Name of Course
Unique Paper Code
Name of Paper
Semester
Duration
Maximum Marks
: CBCS B.Sc. (H) Mathematics
: 32351302_OC

: C6-Group Theory-I

: III
: 3 hours
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Let $G=\operatorname{GL}(n, \mathbb{R})$. Let $H=\{A \in G \mid \operatorname{det} A$ is a power of 5$\}$. Then prove or disprove that H is a subgroup of G. Find the elements in $U(10)$ and $U(12)$ that satisfy the equation $x^{2}=1$.
2. List all the elements of order 3 in \mathbb{Z}_{24}. Find the smallest subgroup of \mathbb{Z} containing 12 and 18 . Determine the subgroup lattice for \mathbb{Z}_{24}.
3. Let S_{n} be the symmetric group of degree n. Suppose that $\alpha \in S_{n}$ can be written as a product of disjoint cyclic permutations of lengths $m_{1}, m_{2}, \ldots, m_{r},(r \in \mathbb{N})$, respectively. Then prove that the order of α is $\operatorname{lcm}\left(m_{1}, m_{2}, \ldots, m_{r}\right)$. Find the orders of $(13)(27)(456)(8)(1237)(648)(5)$ and (124) (345). Furthermore, show that if H is a subgroup of S_{n} then either every member of H is an even permutation or exactly half of them are even. Also, find $Z\left(S_{n}\right)$ for $n \geq 3$.
4. Show that for a finite group G, the index of a subgroup H in G is $|G| /|H|$. Prove that every subgroup of index 2 of a group G is normal. Give an example of a subgroup H of index 3 in a group G which is not normal in G. Also, determine the index of $3 \mathbb{Z}$ in \mathbb{Z}.
5. Let $H=\left\{\beta \in S_{5}: \beta(1)=1\right\}$ and $K=\left\{\beta \in S_{5}: \beta(2)=2\right\}$. Prove that H is isomorphic to K. Is the same true if S_{5} is replaced by S_{n}, where $n \geq 3$? Further prove or disprove that S_{4} is isomorphic to D_{12}.
6. If H is a subgroup of G and K is a normal subgroup of G, then prove that $H /(H \cap K)$ is isomorphic to $H K / K$. Also determine all homomorphisms from \mathbb{Z}_{n} to itself.
