Name of Course

Unique Paper Code

Name of Paper
Semester

Duration

Maximum Marks
: B.A. (Prog.) DSE: Mathematics
: 62357502
: Differential Equations
: V
: 3 hours
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Solve the differential equation

$$
\left(x^{2}+y^{2}+1\right) d x-2 x y d y=0
$$

Also, solve the differential equation

$$
\left(D^{2}+4\right) y=\sin 3 x+e^{x}
$$

where $D \equiv \frac{d}{d x}$.
2. Show that $y_{1}(x)=\sin x$ and $y_{2}(x)=\sin x-\cos x$ are linearly independent solutions of

$$
y^{\prime \prime}+y=0
$$

Determine c_{1} and c_{2} so that the solution

$$
\sin x+3 \cos x \equiv c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

Also, solve

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=6, y(0)=3, y^{\prime}(0)=1
$$

3. Using the method of variation of parameters, solve

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=x^{2} e^{x}
$$

Also, solve

$$
y z^{2} d x-x z^{2} d y-\left(2 x y z+x^{2}\right) d z=0
$$

4. Solve the equations:

$$
\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}}
$$

Also, solve

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=x+\sin x
$$

5. Form a partial differential equation by eliminating the function f from $z=f\left(\frac{y}{x}\right)$.

Also solve the partial differential equation

$$
\left(\frac{y^{2} z}{x}\right) p+x z q=y^{2}
$$

6. Classify the partial differential equation into elliptic, parabolic or hyperbolic

$$
x(x y-1) r-\left(x^{2} y^{2}-1\right) s+y(x y-1) t+(x-1) p+(y-1) q=0
$$

where $r=\frac{\partial^{2} z}{\partial x^{2}}, s=\frac{\partial^{2} z}{\partial x \partial y}, t=\frac{\partial^{2} z}{\partial y^{2}}, p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$.
Also, find a complete integral of partial differential equation

$$
z=p x+q y+p^{2}+q^{2}
$$

