Name of Course
Unique Paper Code
: CBCS B.Sc. (H) Mathematics

Name of Paper : 32355301_OC
: GE-3 Differential Equations
Semester
: III
Duration
: 3 hours
Maximum Marks
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Solve the following problems as indicated:
i. Find the orthogonal trajectories of the family of curves: $x^{2}-y^{2}+2 \rho x y=1$, where ρ is a parameter.
ii. Find an integrating factor and solve: $\left(1-x^{2}\right) y d y+2\left(y^{2}+4\right) d x=0, y(3)=0$.
2. Solve the following problems as specified:
i. Reduce the equation to homogeneous form using the substitution $y=z^{2}$ and hence solve it:

$$
2 x^{2} y \frac{d^{2} y}{d x^{2}}+4 y^{2}=x^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x} .
$$

ii. Find the complimentary functions for the differential equations:

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=x^{2}, 2 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+12 y=e^{x}, 16 \frac{d^{2} y}{d x^{2}}-24 \frac{d y}{d x}+9 y=\sin x .
$$

iii. Find a second order homogeneous linear ordinary differential equation having x^{-3} and x^{-5} as its solutions. Also use Wronskian to show linear independence or dependence of these solutions.
3. Using method of undetermined coefficients, solve the differential equations:
i. $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=\cos x$.
ii. $\quad \frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=x^{2}$.
4. Find the series solution of the differential equations:
i. $\quad \frac{d^{2} y}{d x^{2}}+2 x y=0$.
ii. $\quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0$.
5. Form the partial differential equations by eliminating the arbitrary constants or arbitrary functions from the following surfaces:
i. $2 z=m x^{2}+n y^{2}+m n, m$ and n are arbitrary constants.
ii. $2 z=a+(x+b y)^{2}, a$ and b are arbitrary constants.
iii. $z=x+y+f_{1}(c x+y)+f_{2}(c x-y), c(\neq 0)$ is a fixed constant, f_{1} and f_{2} are arbitrary functions.
6. Identify the equation which is parabolic by nature. Reduce that equation to canonical form and hence solve that equation.
i. $x^{2} u_{x x}-y^{2} u_{y y}-2 y u_{y}+\sin x u_{\varkappa}=0, x \neq 0, y \neq 0$.
ii. $4 y^{2} u_{x x}-3 x y u_{x y}+x^{2} u_{y y}+x u_{x}+y u_{y}=0, x \neq 0, y \neq 0$.
iii. $y^{2} u_{x x}-2 x y u_{x y}+x^{2} u_{y y}-\frac{y^{2}}{x} u_{x}-\frac{x^{2}}{y} u_{y}=0, x \neq 0, y \neq 0$.

