Name of Course
Unique Paper Code
Name of Paper
Semester
Duration
Maximum Marks
: CBCS (LOCF) Generic Elective- Mathematics
: 32355101
: GE-1 Calculus
: I
: 3 hours
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Find all vertical and horizontal asymptotes of the graph of the function $f(x)=\frac{4 x+5}{8-x}$.

Also, find the interval in which $f(x)$ is,
(i) increasing and decreasing
(ii) concave up and concave down.

Determine points of inflection, if any and give a rough sketch of the graph.
2. Find the indeterminate form and evaluate the following limits using L'Hôpital's rule
(i) $\quad \lim _{x \rightarrow 0}\left(\frac{1}{\sin 3 x}-\frac{1}{3 x}\right)$
(ii) $\lim _{x \rightarrow+\infty}\left(\frac{\log x}{x^{7}}\right)$
(iii) $\lim _{x \rightarrow+\infty}(x)^{1 / 2 x}$.
3. Find the volume of the solid generated when the region enclosed between $y=\sqrt{x}, x=1$, $x=4$ and the x-axis is revolved about the y-axis using washer method and cylindrical shell method.
4. Describe the graph of the following
(i) $x^{2}+8 y-6 x-23=0$
(ii) $y^{2}-x^{2}-6 y-4 x+4=0$.

Also label the vertices, foci, directrix or asymptotes in each case.
5. Determine the largest region on which the following functions are continuous. Justify your answer.
(i) $\quad f(x, y)=\left\{\begin{array}{cl}\frac{x y^{2}}{x^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{array}\right.$
(ii)

$$
g(x, y)=\frac{\sin x+\cos y}{2+\sin x}, \quad(x, y) \in \mathbb{R}^{2} .
$$

6. Locate all relative maxima, relative minima and saddle points, if any of the following functions.
(i) $\quad f(x, y)=3 x^{2}+12 x+8 y^{3}-12 y^{2}+38$
(ii) $g(x, y)=\frac{1}{x}+\frac{1}{y}+x y+13$.
