Name of the course	$:$	Generic Elective
Unique Paper Code	$:$	$\mathbf{3 2 3 5 5 1 0 1}$ OC
Name of the Paper	$:$	GE-1 Calculus
Semester	$:$	\mathbf{I}
Duration	$:$	$\mathbf{3}$ hours
Maximum Marks	$:$	$\mathbf{7 5}$

Attempt any four questions. All questions carry equal marks.

1. Let $f(x)$ be a function defined by $f(x)=x^{5}+5 x^{4}$. Determine the intervals in which this function is increasing or decreasing. Further, determine the points of local maxima and local minima. Find the open intervals in which $f(x)$ is concave up and concave down. Also, determine the point of inflexion, if any.
2. Find the following limits
(i) $\lim _{x \rightarrow 0}(\operatorname{cosec} x-\cot x)$,
(ii) $\lim _{x \rightarrow 0}\left(\frac{1}{e^{x}-1}-\frac{1}{x}\right)$,
(iii) $\lim _{x \rightarrow 1}(1-x) \tan \frac{\pi x}{2}$.
3. Use cylindrical shells to find the volume of the solid generated when the region bounded by curves $y=4 x-x^{2}, y=3$ is revolved about line $x=1$.
4. Find the area of surface generated by the revolving the curves
(i) $x=\sqrt{16-y^{2}}, 0 \leq y \leq 2$ about y-axis, (ii) $=\sqrt{x-1}, 2 \leq x \leq 3$ about x-axis.
5. Identify and sketch the conic $4 y^{2}+x^{2}+8 y-10 x+13=0$. Mark the coordinates of foci. Find the equation of the ellipse whose foci are $(2,2)$ and $(2,4)$ and major axis of length 2 .
6. If $r(t)$ is the position of a particle in plane at time t, find the time in the given interval when the velocity and acceleration are orthogonal, where

$$
r(t)=(t-\sin t) i+(1-\cos t) j, 0 \leq t \leq 2 \pi
$$

