Name of Course	$:$ CBCS B.Sc. (H) Mathematics
Unique Paper Code	$: \mathbf{3 2 3 5 1 1 0 2}$
Name of Paper	$:$ BMATH102-Algebra
Semester	$:$ I
Duration	$: \mathbf{3}$ hours
Maximum Marks	$: \mathbf{7 5}$ Marks

Attempt any four questions. All questions carry equal marks.

1. Find all the rational roots of the equation $224 y^{3}-344 y^{2}+22 y-15=0$ and also solve the equation $16 y^{4}-96 y^{3}+56 y^{2}+264 y-135=0$ given that the roots form an arithmetical progression.
2. Draw a rough sketch of the region corresponding to the inequality $\frac{1}{\sqrt{2}}<|z-1-i|<\sqrt{2}$. Use De Movire's theorem to find the square root of $-3+4 i$. Find the extended argument $\operatorname{Arg} z$ of the complex number $z=(-\sqrt{3}-i)(1+i)$.
3. Let $A=\{1,2,3,4,5,6,7\}$. Define a relation R_{l} on the set A which is an equivalence relation. Define a relation R_{2} on the set A which is not an equivalence relation. Let a be an integer, prove that there exists an integer k such that $a^{2}=5 \mathrm{k}$ or $a^{2}=5 k+1$. Evaluate $(5.6+8.11+19.23)(\bmod 9)$.
4. Show that the function $f:\left(\frac{2}{5}, \infty\right) \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow\left(\frac{2}{5}, \infty\right)$ defined by $f(\mathrm{x})=\log _{5}(5 \mathrm{x}-2)$ and $g(x)=\frac{5^{x}+2}{5}$ are the inverse of each other. Prove that the interval $(3,7)$ and $(1, \infty)$ have the same cardinality. Show that 314 and 159 are relatively prime integers.
5. Describe the solutions of the following system in parametric vector form. Give a geometrical description of the solution set.

$$
\begin{gathered}
4 x_{1}-2 x_{2}+6 x_{3}=8 \\
x_{1}+x_{2}-3 x_{3}=-1 \\
15 x_{1}-3 x_{2}+9 x_{3}=21
\end{gathered}
$$

Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation which first reflects points through the line $x_{1}=x_{2}$ and then rotates points (about the origin) through $\pi / 4$ radians. Find the standard matrix of T.
6. Let $A=\left[\begin{array}{ccc}2 & 3 & 4 \\ 3 & 1 & 2 \\ -1 & 2 & 2\end{array}\right]$. Find a basis for
(i) Row Space of A.
(ii) Null Space of A.

Also find Rank A and Nullity A.

