Name of Course
Unique Paper Code
Name of Paper
Semester
Duration
Maximum Marks
: CBCS B.Sc. (H) Mathematics
: 32351101

: BMATH101-Calculus

: I
: 3 hours
: 75 Marks

Attempt any four questions. All questions carry equal marks.

1. Sketch the graph of the function

$$
f(x)=3 x^{4}-4 x^{3}
$$

by finding the intercepts, critical numbers, intervals of increase/decrease, relative extrema, second-order critical numbers, concavity and inflection points.

It is projected that t years from now, the population of a certain country will be

$$
P(t)=50 e^{0.02 t} \text { million. }
$$

(i) At what rate the population is changing with respect to time 10 years from now?
(ii) At what percentage rate will the population be changing with respect to time t years from now?

Find the nth order differential coefficient of

$$
\begin{equation*}
y=\sin x \log (a x+b) \tag{7.75+6+5}
\end{equation*}
$$

2. Convert the polar equation $r=4 \cos \theta+6 \sin \theta$ to rectangular coordinates. Show that it represents a circle. Find the centre and radius of that circle.

Identify and sketch the following conic by removing the $x y$-term

$$
8 x^{2}-12 x y+17 y^{2}=20
$$

Find the equation of hyperbola with vertices $(0, \pm 3)$ and asymptotes $y= \pm x$.

$$
(6+8.75+4)
$$

3. Let R be the region bounded in the first quadrant by the curves $y=x^{2}$, the y-axis and the line $y=1$. Determine the volume of the solid generated when R is revolved about the line $x=2$ using cylindrical shell method and washer method.

Find the area of surface generated by the revolving the curves
(i) $y=\sqrt{4-x^{2}},-1 \leq x \leq 1$ about x-axis,
(ii) $x=y^{3}, 0 \leq y \leq 1$ about the y-axis.
4. Find the vector limit

$$
\lim _{t \rightarrow 0+}\left[\left(1+\frac{1}{t}\right)^{t} \boldsymbol{i}-\left(\frac{\sin t}{t}\right) \boldsymbol{j}-\left(\frac{e^{-t}}{1-t}\right) \boldsymbol{k}\right] .
$$

A projectile is fired from ground level with muzzle speed $50 \mathrm{ft} / \mathrm{s}$ at an angle of elevation of $\alpha=30^{\circ}$. What is the maximum height reached by the projectile? What is the time of flight and the range?

A particle moves along a path given in parametric form where $r(t)=3+2 \sin t$ and $\theta(t)=t^{3}$. Find the velocity and acceleration of the particle in terms of the unit polar vectors $\boldsymbol{u}_{\boldsymbol{r}}$ and $\boldsymbol{u}_{\boldsymbol{\theta}}$.

Find unit tangent $\boldsymbol{T}(t)$ and unit normal $\boldsymbol{N}(t)$ of the curve given by $r(t)=\left(t^{2}+1\right) \boldsymbol{i}+$ $t \boldsymbol{j}$ at $t=1$.

$$
(3.75+5+5+5)
$$

5. Let

$$
L=\lim _{x \rightarrow \pi / 2}(\sin x)^{\tan ^{2} x}
$$

and

$$
M=\lim _{x \rightarrow(\pi / 2)-}(\tan x)^{\sin (2 x)} .
$$

Find the values of L and M and show that $e L^{2}=M$.
Prove that $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right), x \geq 1$.
Find the centre, vertices, foci and ends of minor axis of the ellipse

$$
\begin{equation*}
3 x^{2}+4 y^{2}-30 x-8 y+67=0 \tag{7.75+6+5}
\end{equation*}
$$

6. If $y=\log \left(x+\sqrt{x^{2}+1}\right)$, prove that

$$
\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+n^{2} y_{n}=0
$$

The position of an object moving in space is given by

$$
R(t)=\left(e^{-t} \cos t\right) \boldsymbol{i}+\left(e^{-t} \sin t\right) \boldsymbol{j}+e^{-t} \boldsymbol{k} .
$$

Find the velocity, speed and acceleration of the object at arbitrary time t and at $t=0$. Also, determine the curvature of the trajectory at arbitrary time t and at $t=0$.

Prove that

$$
\int x^{n} e^{x} d x=x^{n} e^{x}-n \int x^{n-1} e^{x} d x
$$

Hence, evaluate $\int x^{2} e^{3 x} d x$.

$$
(6+6+6.75)
$$

