Question Bank Numerical Analysis

Q1: How many roots of the function $f(x)=\left(x^{2}-1\right)(x-3)$ lie in the interval $[-4,4]$ and how many can be calculated using the Bisection method? Also find the root/roots using Bisection method.

Q2: While computing the root of $f(x)=\cos x-x$ on the interval, to acheive the accuracy within 6 significant digits, how many iteration do we need to perform?

Q3: Can we calculate the root of function $f(x)=X^{2}-2 x+1$ on interval $[-3,6]$ using Bisection method? Justify.

Q4: Perform 4 iteration of Bisection method to find out the root of function $g(x)=2 x \cos (\pi x)-e^{x-1}=0$.

Q5: Perform 4 iteration of Regula Falsi method to find out the root of function $g(x)=2 x \cos (\pi x)-e^{x-1}=0$.

Q6: Derive the formula for Newton Raphson Method. Solve the equation $x^{2}+4 x^{\breve{ }} 9=0$ using Newton Raphson method.Discuss drawbacks of the Newton Raphson method.

Q7: An iteration method ois defined by

$$
x_{n+1}=\frac{2\left(x_{n}^{3}+1\right)}{1+3 x_{n}^{2}}, \quad n=0,1,2, \ldots
$$

Find the positive real quantity to which the method converges. Hence, determine the rate of convergence of the method.

Q8:Solve the following system of equations using Gauss Elimination method with partial pivoting:

$$
\begin{array}{r}
2 x+2 y-z=6 \\
4 x+2 y+3 z=4 \\
x+y+z=0
\end{array}
$$

Q9: Perform 5 iterations of Regula Fasli and Secant Method to calculate the root of function $x^{2}-2=0$ on the interval $[0,2]$. Which method will converge faster to the exact root? Justify the order of convergence numerically.

Q10:Solve the following system of equations using Gauss Elimination method with scaled partial pivoting:

$$
\begin{array}{r}
2 x+2 y-z=6 \\
4 x+2 y+3 z=4 \\
x+y+z=0
\end{array}
$$

Q11: Use Gaussian elimination with partial Pivoting and scaled partial pivoting with 4-digit rounding arithmetic to find the solution of following system of linear equations.

$$
\begin{aligned}
3.03 x+12.1 y+14 z & =-119 \\
-3.03 x+12.1 y-7 z & =120 \\
6.11 x-14.2 y+21 z & =-139
\end{aligned}
$$

Compare the approximate solution with the exact solution $\bar{x}=$ $(0,10,17)^{T}$.

Q12:Solve the following system of equations using LU decomposition:

$$
\begin{array}{r}
2 x+2 y-z=6 \\
4 x+2 y+3 z=4 \\
x+y+z=0
\end{array}
$$

Q13: For any square matrix A of order n, if the LU decomposition exists, it is not unique. Justify.

Q14: Perform 4 iterations of Gauss Jacobi method to solve the following system of equation with initial approximation $\bar{x}^{0}=(0,0,0)^{T}$:

$$
\begin{aligned}
28 x+4 y-z & =32 \\
x+3 y+10 z & =24 \\
2 x+17 y+4 z & =35
\end{aligned}
$$

Q15: Perform 4 iterations of Gauss Seidel method to solve the following system of equation with initial approximation $\bar{x}^{0}=(0,0,0)^{T}$:

$$
\begin{aligned}
28 x+4 y-z & =32 \\
x+3 y+10 z & =24 \\
2 x+17 y+4 z & =35
\end{aligned}
$$

Q16: Perform 4 iterations of SOR method with $\omega=1 / 3$ to solve the following system of equation with initial approximation $\bar{x}^{0}=$
$(0,0,0)^{T}$:

$$
\begin{aligned}
28 x+4 y-z & =32 \\
x+3 y+10 z & =24 \\
2 x+17 y+4 z & =35
\end{aligned}
$$

Q17: Consider the following system of equation

$$
\begin{aligned}
28 x+4 y-z & =32 \\
x+3 y+10 z & =24 \\
2 x+17 y+4 z & =35
\end{aligned}
$$

Will the sequence of approximations $\bar{x}^{(n)}$ obtained using Gauss Jacobi and Gauss Seidel method converge for any initial approximation \bar{x}^{0} ?

Q18 :Let $P(x)$ be the interpolating polynomial for the data $(1,4),(3,2),(5, y)$, and $(8,5)$. The coefficient of x^{3} in $P(x)$ is $180 / 31$. Find y.

Q19 : Prove the following relations:

1. $(1+\Delta)(1-\nabla) \equiv 1$
2. $\mu \delta \equiv \frac{\Delta+\nabla}{2}$
3. $\Delta \nabla \equiv \nabla \Delta \equiv \delta^{2}$
4. $E^{1 / 2}=\equiv \mu+\frac{\delta}{2}$
5. $\nabla-\Delta=-\Delta \nabla$
6. $1+\delta^{2} \mu^{2} \equiv\left(1+\frac{\delta^{2}}{2}\right)^{2}$

Q20 : A fourth degree polynomial $P(x)$ satisfies $\Delta^{4} P(0)=24 ; \Delta^{3} P(0)=$ 6 ; and $\Delta^{2} P(0)=0$; where $\Delta P(x)=P(x+1)-P(x)$. Compute $\Delta^{3} P(3)$.

Q21 : Using Lagrange Interpolation formula find the polynomial that approximates the following data:

x	0	1	2	3
$f(x)$	1	2	1	10

Q22: Create a divided difference table for the following table: Us-

x	4	5	7	10	11	18
$f(x)$	48	100	294	900	1210	2028

ing Newton's divided difference formula, find the value of $f(8)$ and $f(13)$.

Q23 : Verify that the following difference approximations for calculating first order derivative $f^{\prime(x)}$ for any function $f(x)$ are

1. second order accurate

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}
$$

2. second order accurate

$$
f^{\prime}(x)=\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}
$$

3. second order accurate

$$
f^{\prime}(x)=\frac{3 f(x)-f(x-h)+f(x-2 h)}{2 h}
$$

4. fourth order accurate

$$
f^{\prime}(x)=\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}
$$

Q24 : Verify that the following difference approximations for calculating second order derivative $f^{\prime \prime}(x)$ for any function $f(x)$ are

1. second order accurate

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{2 h}
$$

2. second order accurate

$$
f^{\prime \prime}(x)=\frac{2 f(x)-5 f(x+h)+4 f(x+2 h)-f(x+3 h)}{h^{3}}
$$

3. second order accurate

$$
f^{\prime \prime}(x)=\frac{2 f(x)-5 f(x-h)+4 f(x-2 h)-f(x-3 h)}{h^{3}}
$$

4. fourth order accurate

$$
f^{\prime \prime}(x)=\frac{-f(x+2 h)+16 f(x+h)-30 f(x) 168 f(x-h)-f(x-2 h)}{12 h^{2}}
$$

Q25 : Let $f(x)=x^{2}+e^{x}-2 x$ and $x=0$. Show numerically that the approximation of derivative of $f(x)$ at $x=0$ is

1. second order accurate using the difference formula

$$
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}
$$

2. second order accurate using the difference formula

$$
f^{\prime}(x)=\frac{-3 f(x)+4 f(x+h)-f(x+2 h)}{2 h}
$$

3. second order accurate using the difference formula

$$
f^{\prime}(x)=\frac{3 f(x)-f(x-h)+f(x-2 h)}{2 h}
$$

4. fourth order accurate using the difference formula

$$
f^{\prime}(x)=\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}
$$

Q26 : Let $f(x)=x^{2}+e^{x}-2 x$ and $x=0$. Show numerically that the approximation of second order derivative of $f(x)$ at $x=0$ is

1. second order accurate using the difference formula

$$
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{2 h}
$$

2. second order accurate using the difference formula

$$
f^{\prime \prime}(x)=\frac{2 f(x)-5 f(x+h)+4 f(x+2 h)-f(x+3 h)}{h^{3}}
$$

3. second order accurate using the difference formula

$$
f^{\prime \prime}(x)=\frac{2 f(x)-5 f(x-h)+4 f(x-2 h)-f(x-3 h)}{h^{3}}
$$

4. fourth order accurate using the difference formula

$$
f^{\prime \prime}(x)=\frac{-f(x+2 h)+16 f(x+h)-30 f(x) 168 f(x-h)-f(x-2 h)}{12 h^{2}}
$$

Q27: Evaluate

$$
\int_{1}^{2} \frac{d x}{1+x^{3}}
$$

using Trapezoidal Rule, Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule.

Q28: The velocity of an object as a function of time is given by:

$\operatorname{Time}(t)$	2	5	7	9	12
velocity $(v(t))$	12	16	24	15	33

Using the trapezoidal rule and Simpson's $\frac{1}{3}$ rule, calculate the distance travelled by the object between $t=2$ and $t=12$.

Q29 : Using Euler's method, Modified Euler's Method and fourth order Runge-Kutta method, approximate the solution of the given over indicated time interval and number of time steps:

1. $x^{\prime}(t)=t x^{3}-x, \quad(0 \leq t \leq 1), \quad x(0)=1, \quad N=4$.
2. $x^{\prime}(t)+4 x / t=t^{4}, \quad(0 \leq t \leq 3), \quad x(0)=1, \quad N=5$.
3. $x^{\prime}(t)=\frac{\sin x-e^{t}}{\cos x}, \quad(0 \leq t \leq 1), \quad x(0)=0, \quad N=3$.
4. $x^{\prime}(t)=\frac{1+x^{2}}{t}, \quad(1 \leq t \leq 4), \quad x(1)=0, \quad N=5$.
5. $x^{\prime}(t)=t^{2}-2 x^{2}-1, \quad(0 \leq t \leq 1), \quad x(0)=0, \quad N=6$.
6. $x^{\prime}(t)=x+t, \quad(1 \leq t \leq), \quad x(1)=0, \quad N=10$.
7. $x^{\prime}(t)=x+t+x t, \quad(0 \leq t \leq 0.1), \quad x(0)=1, \quad N=10$.
8. $x^{\prime}(t)=\frac{t}{x}, \quad(0 \leq t \leq 1), \quad x(0)=1, \quad N=5$.

Also calculate the order of convergence numerically.

