Question Bank

Numerical Analysis

Q1: How many roots of the function $f(x) = (x^2 - 1)(x - 3)$ lie in the interval [-4, 4] and how many can be calculated using the Bisection method? Also find the root/roots using Bisection method.

Q2: While computing the root of $f(x) = \cos x - x$ on the interval, to acheive the accuracy within 6 significant digits, how many iteration do we need to perform?

Q3: Can we calculate the root of function $f(x) = X^2 - 2x + 1$ on interval [-3, 6] using Bisection method? Justify.

Q4: Perform 4 iteration of Bisection method to find out the root of function $g(x) = 2x \cos(\pi x) - e^{x-1} = 0$.

Q5: Perform 4 iteration of Regula Falsi method to find out the root of function $g(x) = 2x \cos(\pi x) - e^{x-1} = 0$.

Q6: Derive the formula for Newton Raphson Method. Solve the equation $x^2 + 4x \cdot 9 = 0$ using Newton Raphson method.Discuss drawbacks of the Newton Raphson method.

Q7: An iteration method ois defined by

$$x_{n+1} = \frac{2(x_n^3 + 1)}{1 + 3x_n^2}, \quad n = 0, 1, 2, \dots$$

Find the positive real quantity to which the method converges. Hence, determine the rate of convergence of the method.

Q8:Solve the following system of equations using Gauss Elimination method with partial pivoting:

$$2x + 2y - z = 6$$

$$4x + 2y + 3z = 4$$

$$x + y + z = 0$$

Q9: Perform 5 iterations of Regula Fasli and Secant Method to calculate the root of function $x^2 - 2 = 0$ on the interval [0, 2]. Which method will converge faster to the exact root? Justify the order of convergence numerically.

Q10:Solve the following system of equations using Gauss Elimination method with scaled partial pivoting:

$$2x + 2y - z = 6$$

$$4x + 2y + 3z = 4$$

$$x + y + z = 0$$

Q11: Use Gaussian elimination with partial Pivoting and scaled partial pivoting with 4-digit rounding arithmetic to find the solution of following system of linear equations.

$$3.03x + 12.1y + 14z = -119$$

$$-3.03x + 12.1y - 7z = 120$$

$$6.11x - 14.2y + 21z = -139$$

Compare the approximate solution with the exact solution $\overline{x} = (0, 10, 17)^T$.

Q12:Solve the following system of equations using LU decomposition:

$$2x + 2y - z = 6$$

$$4x + 2y + 3z = 4$$

$$x + y + z = 0$$

Q13: For any square matrix A of order n, if the LU decomposition exists, it is not unique. Justify.

Q14: Perform 4 iterations of Gauss Jacobi method to solve the following system of equation with initial approximation $\overline{x}^0 = (0, 0, 0)^T$:

$$28x + 4y - z = 32x + 3y + 10z = 242x + 17y + 4z = 35$$

Q15: Perform 4 iterations of Gauss Seidel method to solve the following system of equation with initial approximation $\overline{x}^0 = (0, 0, 0)^T$:

$$28x + 4y - z = 32 x + 3y + 10z = 24 2x + 17y + 4z = 35$$

Q16: Perform 4 iterations of SOR method with $\omega = 1/3$ to solve the following system of equation with initial approximation $\overline{x}^0 =$ $(0,0,0)^T$:

$$28x + 4y - z = 32 x + 3y + 10z = 24 2x + 17y + 4z = 35$$

Q17: Consider the following system of equation

$$28x + 4y - z = 32x + 3y + 10z = 242x + 17y + 4z = 35$$

Will the sequence of approximations $\overline{x}^{(n)}$ obtained using Gauss Jacobi and Gauss Seidel method converge for any initial approximation \overline{x}^{0} ?

Q18 :Let P(x) be the interpolating polynomial for the data (1, 4), (3, 2), (5, y), and (8, 5). The coefficient of x^3 in P(x) is 180/31. Find y.

Q19 : Prove the following relations:

1. $(1 + \Delta)(1 - \nabla) \equiv 1$ 2. $\mu \delta \equiv \frac{\Delta + \nabla}{2}$ 3. $\Delta \nabla \equiv \nabla \Delta \equiv \delta^2$ 4. $E^{1/2} = \equiv \mu + \frac{\delta}{2}$ 5. $\nabla - \Delta = -\Delta \nabla$ 6. $1 + \delta^2 \mu^2 \equiv \left(1 + \frac{\delta^2}{2}\right)^2$

Q20: A fourth degree polynomial P(x) satisfies $\Delta^4 P(0) = 24$; $\Delta^3 P(0) = 6$; and $\Delta^2 P(0) = 0$; where $\Delta P(x) = P(x+1) - P(x)$. Compute $\Delta^3 P(3)$.

Q21 : Using Lagrange Interpolation formula find the polynomial that approximates the following data:

x	0	1	2	3
f(x)	1	2	1	10

 $\mathbf{Q22}$: Create a divided difference table for the following table: Us-

x	4	5	7	10	11	18
f(x)	48	100	294	900	1210	2028

ing Newton's divided difference formula, find the value of f(8) and f(13).

Q23 : Verify that the following difference approximations for calculating first order derivative $f'^{(x)}$ for any function f(x) are

1. second order accurate

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

2. second order accurate

$$f'(x) = \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$

3. second order accurate

$$f'(x) = \frac{3f(x) - f(x-h) + f(x-2h)}{2h}$$

4. fourth order accurate

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

Q24 : Verify that the following difference approximations for calculating second order derivative f''(x) for any function f(x) are

1. second order accurate

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{2h}$$

2. second order accurate

$$f''(x) = \frac{2f(x) - 5f(x+h) + 4f(x+2h) - f(x+3h)}{h^3}$$

3. second order accurate

$$f''(x) = \frac{2f(x) - 5f(x-h) + 4f(x-2h) - f(x-3h)}{h^3}$$

4. fourth order accurate

$$f''(x) = \frac{-f(x+2h) + 16f(x+h) - 30f(x)168f(x-h) - f(x-2h)}{12h^2}$$

Q25: Let $f(x) = x^2 + e^x - 2x$ and x = 0. Show numerically that the approximation of derivative of f(x) at x = 0 is

1. second order accurate using the difference formula

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h}$$

2. second order accurate using the difference formula

$$f'(x) = \frac{-3f(x) + 4f(x+h) - f(x+2h)}{2h}$$

3. second order accurate using the difference formula

$$f'(x) = \frac{3f(x) - f(x-h) + f(x-2h)}{2h}$$

4. fourth order accurate using the difference formula

$$f'(x) = \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$

Q26 : Let $f(x) = x^2 + e^x - 2x$ and x = 0. Show numerically that the approximation of second order derivative of f(x) at x = 0 is

1. second order accurate using the difference formula

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{2h}$$

2. second order accurate using the difference formula

$$f''(x) = \frac{2f(x) - 5f(x+h) + 4f(x+2h) - f(x+3h)}{h^3}$$

3. second order accurate using the difference formula

$$f''(x) = \frac{2f(x) - 5f(x-h) + 4f(x-2h) - f(x-3h)}{h^3}$$

4. fourth order accurate using the difference formula

$$f''(x) = \frac{-f(x+2h) + 16f(x+h) - 30f(x)168f(x-h) - f(x-2h)}{12h^2}$$

Q27: Evaluate

$$\int_{1}^{2} \frac{dx}{1+x^3}$$

using Trapezoidal Rule, Simpson's $\frac{1}{3}$ rule and Simpson's $\frac{3}{8}$ rule.

Q28 : The velocity of an object as a function of time is given by:

$\operatorname{Time}(t)$	2	5	7	9	12
velocity(v(t))	12	16	24	15	33

Using the trapezoidal rule and Simpson's $\frac{1}{3}$ rule, calculate the distance travelled by the object between t = 2 and t = 12.

Q29 : Using Euler's method, Modified Euler's Method and fourth order Runge-Kutta method, approximate the solution of the given over indicated time interval and number of time steps:

1. $x'(t) = tx^3 - x$, $(0 \le t \le 1)$, x(0) = 1, N = 4. 2. $x'(t) + 4x/t = t^4$, $(0 \le t \le 3)$, x(0) = 1, N = 5. 3. $x'(t) = \frac{\sin x - e^t}{\cos x}$, $(0 \le t \le 1)$, x(0) = 0, N = 3. 4. $x'(t) = \frac{1 + x^2}{t}$, $(1 \le t \le 4)$, x(1) = 0, N = 5. 5. $x'(t) = t^2 - 2x^2 - 1$, $(0 \le t \le 1)$, x(0) = 0, N = 6. 6. x'(t) = x + t, $(1 \le t \le)$, x(1) = 0, N = 10. 7. x'(t) = x + t + xt, $(0 \le t \le 0.1)$, x(0) = 1, N = 10. 8. $x'(t) = \frac{t}{x}$, $(0 \le t \le 1)$, x(0) = 1, N = 5.

Also calculate the order of convergence numerically.