Question Bank B.Sc. (h) Mathematics-V Semester Metric Spaces

- Q1. Is A, B are dense in X, is $A \cup B$ dense in X? Is $A \cap B$ dense in X?
- Q2. (a) Prove that the metric spaces, *R* with the usual metric and (0,∞) with the usual metric induced from *R* are homeomorphic.
 (b) Show that (0,1] and [1,∞) are homeomorphic under usual metric.
- Q3. Is the set A = {(x, y) : x + y = 1} open in the metric space (R^2, d_2) ? Justify.
- Q4. Let F be a subset of a metric space (X, d). Prove that the set of limit points of F is closed subset of (X, d).
- Q5. Let F be a non-empty bounded closed subset of R, with usual metric and $a = \sup F$. Prove that $a \in F$.
- Q6. Let (X, d) be any metric space and $f: (X, d) \to (\mathbb{R}^n, d_2)$ be defined by: $f(x) = (f_1(x), f_2(x), \dots, f_n(x))$, for $x \in X$. Show that if f is continuous, so is each $f_k: X \to \mathbb{R}$, $k = 1, 2, \dots, n$.
- Q7. Give an example of complete metric space *X* and a function $f : X \to X$ such that

 $d(f(x), f(y)) \le d(x, y)$ for all $x, y \in X$, but f has no fixed point in X.

- Q8. If $x = \langle x_n \rangle$ has a subsequence which converges to z. Show that dist $(z, \{x_n : n \in N\}) = 0.$
 - Give an example to show that converse of above statement is not necessarily true.
- Q9. Suppose X is a metric space and S is non-empty subset of X. Then prove that diam(cl(S)) = diam(S). Do also we have $diam(S^{\circ}) = diam(S)$? Justify your answer.
- Q10. Suppose X is a metric space and $S \subseteq X$. Prove that (a) $(S^{\circ})^{c} = cl(S^{c})$ (b) $S^{\circ} = \{x \in X : dist(x, S^{c}) > 0\}.$
- Q11. Suppose (X, d) is a metric space, $x \in X$ and A is a subset of X. Then show that dist(x, cl(A)) = dist(x, A), where cl(A) is the closure of A.
- Q12. Let (X, d) be a metric space and $Y \subseteq X$ be connected. If $Y \subseteq A \cup B$ where A and B are separated sets in X then prove that either $Y \subseteq A$ or $Y \subseteq B$.
- Q13. Can a metric space be empty? What is the use of metric space in real life?
- Q14. Why is every metric space open?
- Q15. Let d be a metric on X. Determine all constants k such that (i) kd, (ii) d + k

is a metric on X.

- Q16. Describe the closure of each of the following Subsets:
 - (a) The integers on R. (b) The rational numbers on R.
 - (c) The complex number with real and imaginary parts as rational in C.
 - (d) The disk $\{z : |z| < 1\} \subset C$.
- Q17. If (x_n) and (y_n) are Cauchy sequences in a metric space (X, d) show that (a_n) , where $a_n = d(x_n, y_n)$, converges.
- Q18. Let X=R and for x, $y \in R$, define d(x, y) by

$$d(x,y) = \begin{cases} |x-y|+1, & \text{if exactly one of } x \text{ and } y \text{ is strictly positive} \\ |x-y|, & \text{otherwise} \end{cases}$$

Prove that (X, d) is a metric space.

Q19. Prove that (0,1) with absolute value metric is not complete but (0,1) with discrete metric is complete.