Question Bank

B.Sc. (h) Mathematics-V Semester
Metric Spaces

Q1. Is A, B are dense in X, is $A \cup B$ dense in X ? Is $A \cap B$ dense in X ?
Q2. (a) Prove that the metric spaces, R with the usual metric and $(0, \infty)$ with the usual metric induced from R are homeomorphic.
(b) Show that $(0,1]$ and $[1, \infty)$ are homeomorphic under usual metric.

Q3. Is the set $\mathrm{A}=\{(x, y): x+y=1\}$ open in the metric space $\left(R^{2}, d_{2}\right)$? Justify.
Q4. Let F be a subset of a metric space (X, d). Prove that the set of limit points of F is closed subset of (X, d).

Q5. Let F be a non-empty bounded closed subset of R, with usual metric and $a=\sup \mathrm{F}$. Prove that $a \in \mathrm{~F}$.

Q6. Let (X, d) be any metric space and $f:(X, d) \rightarrow\left(R^{n}, d_{2}\right)$ be defined by: $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$, for $x \in X$. Show that if f is continuous, so is each $f_{k}: X \rightarrow$ $R, \quad k=1,2, \ldots, n$.

Q7. Give an example of complete metric space X and a function $f: X \rightarrow X$ such that
$d(f(x), f(y)) \leq d(x, y)$ for all $x, y \in X$, but f has no fixed point in X.
Q8. If $x=<x_{n}>$ has a subsequence which converges to z . Show that
$\operatorname{dist}\left(\mathrm{z},\left\{x_{n}: n \in N\right\}\right)=0$.
Give an example to show that converse of above statement is not necessarily true.
Q9. Suppose X is a metric space and S is non-empty subset of X. Then prove that $\operatorname{diam}(c l(S))=$ $\operatorname{diam}(S)$. Do also we have $\operatorname{diam}\left(S^{\circ}\right)=\operatorname{diam}(S)$? Justify your answer.

Q10. Suppose X is a metric space and $S \subseteq X$. Prove that
(a) $\left(S^{\circ}\right)^{c}=\operatorname{cl}\left(S^{c}\right)$
(b) $S^{\circ}=\left\{x \in X: \operatorname{dist}\left(x, S^{c}\right)>0\right\}$.

Q11. Suppose (X, d) is a metric space, $x \in X$ and A is a subset of X. Then show that $\operatorname{dist}(x, \operatorname{cl}(\mathrm{~A}))=$ $\operatorname{dist}(x, \mathrm{~A})$, where $\operatorname{cl}(\mathrm{A})$ is the closure of A .

Q12. Let (X, d) be a metric space and $Y \subseteq X$ be connected. If $Y \subseteq A \cup \mathrm{~B}$ where A and B are separated sets in X then prove that either $Y \subseteq \mathrm{~A}$ or $Y \subseteq \mathrm{~B}$.
Q13. Can a metric space be empty? What is the use of metric space in real life?
Q14. Why is every metric space open?
Q15. Let d be a metric on X. Determine all constants k such that (i) $k d$, (ii) $d+k$ is a metric on X .

Q16. Describe the closure of each of the following Subsets:
(a) The integers on R. (b) The rational numbers on R.
(c) The complex number with real and imaginary parts as rational in C .
(d) The disk $\{\mathrm{z}:|\mathrm{z}|<1\} \subset \mathrm{C}$.

Q17. If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are Cauchy sequences in a metric space (X, d) show that $\left(a_{n}\right)$, where $a_{n}=d\left(x_{n}, y_{n}\right)$, converges.

Q18. Let $\mathrm{X}=\mathrm{R}$ and for $\mathrm{x}, \mathrm{y} \in \mathrm{R}$, define $\mathrm{d}(\mathrm{x}, \mathrm{y})$ by

$$
d(x, y)=\left\{\begin{array}{lr}
|x-y|+1, & \text { if exactly one of } x \text { and } y \text { is strictly positive } \\
|x-y|, & \text { otherwise }
\end{array}\right.
$$

Prove that (X, d) is a metric space.
Q19. Prove that $(0,1)$ with absolute value metric is not complete but $(0,1)$ with discrete metric is complete.

