Question Bank
B.Sc(H) Mathematics-III Semester
Group Theory-I

Q1. Prove that factor group of cyclic/abelian group is cyclic/abelian.
Q2. If H is a normal subgroup of a group G, prove that $\mathrm{C}(\mathrm{H})$, the centralizer of H in G , is a normal subgroup of G .

Q3. Let G be a group and p a prime. Suppose that $H=\left\{g^{p}: \mathrm{g} \in G\right\}$ is a subgroup of G. Show that H is normal and that every nonidentity element of G / H has order p.

Q4. Write out a complete Cayley table for D_{3}. Is D_{3} Abelian?
Q5. Find elements A, B, and C in D_{4} such that $\mathrm{AB}=\mathrm{BC}$ but $\mathrm{A} \neq \mathrm{C}$.
Q6. In each case, find the inverse of the element under the given operation. a) 13 in $\mathrm{Z}_{20} \quad$ b) 13 in $\mathrm{U}(14) \quad$ c) $\mathrm{n}-1$ in $\mathrm{U}(\mathrm{n}) \quad(\mathrm{n}>2)$ d) 3-2i in C^{*}, the group of nonzero complex numbers under multiplication

Q7. For any elements a and b from a group and any integer n, prove that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$.
Q8. List the six elements of $\operatorname{GL}\left(2, Z_{2}\right)$. Show that this group is non Abelian by finding two elements that do not commute.

Q9. Let G be a group. Show that $Z(G)=\cap_{a \in G} C(a)$.
Q10. Let G be a group, and let $a \in G$. Prove that $C(a)=C\left(a^{-1}\right)$.
Q11. Prove that S_{n} is non-Abelian for all $n \geq 3$. Also, Show that for $n \geq 3, Z\left(S_{n}\right)=\{\mathrm{e}\}$.

Q12. Let N be a normal subgroup of G and let H be a subgroup of G . If N is a subgroup of H , prove that H / N is a normal subgroup of G / N if and only if H is a normal subgroup of G .

Q13. Show that the intersection of two normal subgroups of G is a normal subgroup of G . Generalize.
Q14. If H is a normal subgroup of G and $|H|=2$, prove that H is contained in the center of G.
Q15. Describe the symmetries of a nonsquare rectangle. Construct the corresponding Cayley table.
Q16. Show that the group $\operatorname{GL}(2, \mathrm{R})$ is non-Abelian. Also, find the inverse of the element $\left[\begin{array}{ll}2 & 6 \\ 3 & 5\end{array}\right]$ in $\mathrm{GL}\left(2, \mathrm{Z}_{11}\right)$.

Q17. List the members of $H=\left\{x^{2} \mid x \in D_{4}\right\}$ and $K=\left\{x \in D_{4} \mid x^{2}=e\right\}$.
Q18. Let G be a finite group. Show that the number of elements x of G such that $\mathrm{x}^{3}=\mathrm{e}$ is odd. Show that the number of elements x of G such that $x^{2} \neq e$ is even.

Q19. Let $G=\left\{\left[\begin{array}{ll}a & a \\ a & a\end{array}\right]: a \in R, a \neq 0\right\}$. Show that G is a group under matrix multiplication. Explain why each element of G has an inverse even though the matrices have 0 determinants.

Q20. Suppose G is a group that has exactly eight elements of order 3. How many subgroups of order 3 does G have?

Q21. Let $G=G L(2, R)$. a) Find $C\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right) \quad$ b) Find $C\left(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right) \quad$ c) Find $Z(G)$.
Q22. Let Z denote the group of integers under addition. Is every subgroup of Z cyclic? Why? Describe all the subgroups of Z. Let a be a group element with infinite order. Describe all subgroups of <a>.

Q23. Give an example of subgroups H and K of a group G such that HK is not a subgroup of G .
Q24. If N and M are normal subgroups of G , prove that NM is also a normal subgroup of G .
Q25. Let N be a normal subgroup of a group G . If N is cyclic, prove that every subgroup of N is also normal in G .

Q26. Show that $\{1,2,3\}$ under multiplication modulo 4 is not a group but that $\{1,2,3,4\}$ under multiplication modulo 5 is a group

Q27. Give an example of a group with 105 elements. Give two examples of groups with 44 elements.
Q28. Prove that the set of all rational numbers of the form $3^{m} 6^{n}$, where m and n are integers, is a group under multiplication. Also, let m and n be elements of the group ($\mathrm{Z},+$). Find a generator for the group $\langle\mathrm{m} \cap \mathrm{n}>$.

Q29. For any elements a and b from a group and any integer n , prove that
a) $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$,
b) $|\mathrm{ab}|=|\mathrm{ba}|$,
c) $|a b|=\left|a^{-1} b^{-1}\right|$.

Q30. Let $H=\{A \in G L(2, R) \mid$ det A is an integer power of 2$\}$. Show that H is a subgroup of $G L(2, R)$.
Q31. Let $\mathrm{G}=\mathrm{GL}(2, \mathrm{R})$ and $\mathrm{H}=\left\{\left[\begin{array}{ll}\mathrm{a} & 0 \\ 0 & \mathrm{~b}\end{array}\right]\right.$: a and b are nonzero integers $\}$ under the operation of matrix multiplication. Prove or disprove that H is a subgroup of $\mathrm{GL}(2, \mathrm{R})$.

Q32. Show that the group of positive rational numbers under multiplication is not cyclic.

