Question Bank

B.Sc(H) Mathematics-VI Semester Complex Analysis

Q 1. If z_1 and z_2 are two complex numbers prove that $\left|\frac{z_1 - z_2}{1 - z_2 \overline{z_1}}\right| = 1$ if either $|z_1| = 1$ or $|z_2| = 1$.

What exception must be made if $|z_1|=1$ and $|z_2|=1$.

Q 2. If
$$\frac{\partial^2}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x}$$
. Prove that $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial z}$

- Q 3. Show that if f(z) is a differentiable function, then the CR equation can be put in the form $\frac{\partial f}{\partial z} = 0.$
- Q 4. Find the analytic function f(z) = u + iv, if $u + v = \frac{\sin 2x}{\cos h \, 2y \cos \, 2x}$.

Q 5. Given
$$v(x,y) = x^4 - 6x^2x^2 + y^4$$
, find the $f(z) = u(x,y) + iv(x,y)$ such that $f(z)$ is analytic.

Q 6. Find the analytic function f(z) = u + iv, if $u - v = e^x(\cos y - \sin y)$.

Q 7. If
$$f(z)$$
 is analytic function prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$.

Q 8. Find the real part of the analytic function whose imaginary part is

 $e^{-x}[2xy\cos y + (y^2 - x^2)\sin y]$. Construct the analytic function.

- Q 9. Find the image of the strip 2 < x < 3 under map $W = \frac{1}{z}$.
- Q 10. Show that the bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
- Q 11. Find the anti-derivative of the function $(z) = iz + z^2 + 2e^{-iz}$. Also, use the ML-inequality to prove that

$$\left|\int \frac{f(z)}{z} dz\right| \le 4(1+e)\pi$$

on the positively oriented circle C: |z| = 1.

Q 12. Let C be the positively oriented circle |z - i| = 3. Use the Cauchy Integral Formula to evaluate on C

$$\left|\int \frac{e^{i\pi z}}{(z-1)(z-2)}\,dz\right|.$$

Use the extension of Cauchy Integral Formula to find the value of the integral

$$\int \frac{e^{i\pi z}}{(z-1)^4} dz.$$

What is the value of the integral

$$\int \frac{e^{i\pi z}}{(z-5)} dz.$$

Justify your answer.