Question Bank

B.Sc(H) Mathematics-VI Semester

Complex Analysis

Q 1. If z_{1} and z_{2} are two complex numbers prove that $\left|\frac{z_{1}-z_{2}}{1-z_{2} \overline{z_{1}}}\right|=1$ if either $\left|z_{1}\right|=1$ or $\left|z_{2}\right|=1$.
What exception must be made if $\left|z_{1}\right|=1$ and $\left|z_{2}\right|=1$.
Q 2. If $\frac{\partial^{2}}{\partial x \partial y}=\frac{\partial^{2}}{\partial y \partial x}$. Prove that $\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}=4 \frac{\partial^{2}}{\partial z \partial z}$.
Q 3. Show that if $f(z)$ is a differentiable function, then the $C R$ equation can be put in the form $\frac{\partial f}{\partial z}=0$.

Q 4. Find the analytic function $f(z)=u+i v$, if $u+v=\frac{\sin 2 x}{\cos h 2 y-\cos 2 x}$.
Q 5. Given $v(x, y)=x^{4}-6 x^{2} x^{2}+y^{4}$, find the $f(z)=u(x, y)+i v(x, y)$ such that $f(z)$ is analytic.
Q 6. Find the analytic function $f(z)=u+i v$, if $u-v=e^{x}(\cos y-\sin y)$.
Q 7. If $f(z)$ is analytic function prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
Q 8. Find the real part of the analytic function whose imaginary part is $e^{-x}\left[2 x y \cos y+\left(y^{2}-x^{2}\right) \sin y\right]$. Construct the analytic function.

Q 9. Find the image of the strip $2<x<3$ under map $w=\frac{1}{z}$.
Q 10. Show that the bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.

Q 11. Find the anti-derivative of the function $(z)=i z+z^{2}+2 e^{-i z}$. Also, use the ML-inequality to prove that

$$
\left|\int \frac{f(z)}{z} d z\right| \leq 4(1+e) \pi
$$

on the positively oriented circle $\mathrm{C}:|\mathrm{z}|=1$.
Q 12. Let C be the positively oriented circle $|z-i|=3$. Use the Cauchy Integral Formula to evaluate on C

$$
\left|\int \frac{e^{i \pi z}}{(z-1)(z-2)} d z\right|
$$

Use the extension of Cauchy Integral Formula to find the value of the integral

$$
\int \frac{e^{i \pi z}}{(z-1)^{4}} d z
$$

What is the value of the integral

$$
\int \frac{e^{i \pi z}}{(z-5)} d z
$$

Justify your answer.

